
Evolution of Volunteer Participation in Libre Software Projects:
Evidence from Debian

Gregorio Robles, Jesus M. Gonzalez-Barahona
Grupo de Sistemas y Comunicaciones

Universidad Rey Juan Carlos (Madrid, Spain)
{grex,jgb}@gsyc.escet.urjc.es

Martin Michlmayr
Centre for Technology Management

University of Cambridge
martin@michlmayr.org

Abstract— Most libre software projects rely on the work of
volunteers. Therefore, attracting people who contribute their
time and technical skills is of paramount importance, both
in technical and economic terms. This reliance on volunteers
leads to some fundamental management challenges: volunteer
contributions are inherently difficult to predict, plan and
manage, especially in the case of large projects. In this paper
we analyze the evolution in time of the human resources
of one of the largest and most complex libre software
projects composed primarily of volunteers, the Debian project.
Debian currently has around 1300 volunteers working on
several tasks: much activity is focused on packaging software
applications and libraries, but there is also major work related
to the maintenance of the infrastructure needed to sustain the
development. We have performed a quantitative investigation
of data from almost seven years, studying how volunteer
involvement has affected the software released by the project
and the developer community itself.

Index Terms— libre software engineering, human resources,
volunteer developers, software evolution.

I. INTRODUCTION

Volunteer contributions are the base of most libre soft-
ware projects1. However, the characteristics and way of
working of volunteers can be quite different from those
of employees, which are the main force behind traditional
software development. Volunteers can contribute with the
amount of effort they want, can commit for the time period
they consider convenient, and can devote their time to
the tasks they may prefer, given that the context of the
project allows them to do so. Despite of this, some libre
software projects have produced software which has gained
significant popularity. This shows that the unstructured col-
laboration of volunteers is a viable software development
strategy, even if it is associated with certain challenges
related to project management and quality. In this paper
we will explore how these voluntary contributions have
been working in the specific case of a large libre software
project, to have some actual data about their behavior.
We started the study stating some questions, for some of
which we thought we already knew the answer. To our
surprise, we found out that, even with the high knowledge
we thought we had about the history of the project, the data
told a different tale.

We define in this paper volunteers as those who col-
laborate in libre software projects in their free time not
profiting economically in a direct way from their effort.

1In this paper we will use the term “libre software” to refer to any
software licensed under terms compliant with the FSF definition of “free
software”, and the OSI definition of “open source software”, thus avoiding
the controversy between those two terms. However, in the specific case of
Debian, the project has its own definition of “free software”, the Debian
Free Software Guidelines, from which the OSI definition originated later.

Volunteers can be IT-related professionals or not, but their
professional activity is not the one they perform on a
given libre software project. Although the vast majority
of participants in libre software projects are following our
definition volunteers there also exist non-volunteers (also
known as paid employees), i.e. those whose professional
activity is to work on that specific project. In a study on
the GNOME project [1], German states that paid employees
from various companies are usually responsible for less
attractive tasks, such as project design and coordination,
testing, documentation and bug fixing. Also, “[m]ost of the
paid developers in GNOME were, at some point, volun-
teers. Essentially for the volunteers, their hobby became
their job” [1].

The involvement of volunteers, of course, raises new
economic issues that have to be taken into account for
business strategies around libre software. Collaboration
from volunteers is difficult to predict, but if it is given
it may add value to a software system in very economic
terms for a software company.

The structure of this paper is as follows. The next section
briefly explains the nature of maintainers in the Debian
project, and of the Debian operating system. Then we state
the questions we aimed to answer before starting this study,
including possible answers we expected at that time. After
that, we explain the methodology we devised and followed
to answer those questions, and the data sources we used.
We later show the actual results obtained from the empirical
analysis, and contrast them with what we had expected. The
paper ends with some conclusions and lessons learned.

II. MAINTAINERS IN THE DEBIAN PROJECT

Debian is an operating system completely based on libre
software [2], [3]. It includes a large number of applications,
such as the GNU tools and Mozilla, and the system
is known for its solid integration of different software
components. Debian’s most popular distribution, Debian
GNU/Linux, is based on the Linux kernel. Ports to other
kernels, such as the Hurd and FreeBSD, are in development.

One of the main characteristics of the Debian distribution
is that during the whole life of the project it has been
maintained by a group of volunteers, which has grown to
quite a substantial number. These individuals devote their
own time and technical skills to the creation and integration
of software packages, trying to supply users with a robust
system which provides a lot of functionality and technical
features.

One of the main characteristics of the Debian distribution
is that the bulk of work has always been performed by vol-
unteers; furthermore, the project has grown to substantial

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



size over the years. The individuals involved in Debian de-
vote their own time and technical skills to the creation and
integration of software packages, thereby supplying users
with a robust system which provides a lot of functionality
and technical features.

Following our definition of volunteers, all maintainers
in Debian are volunteers. Some employers of people who
act as Debian maintainers in their spare time permit their
staff to devote some of their time to Debian during work
hours. Nevertheless, the majority of work by most Debian
maintainers is performed in their spare time. In contrast
to some projects, such as the Linux kernel and GNOME,
there are no Debian maintainers who are paid to work on
the system full-time.

There are several tasks that volunteers can do in De-
bian: maintaining software packages, supporting the server
infrastructure, developing Debian-specific software as for
instance the installation and package management tool,
translation of documentation and web pages, etc. From all
these tasks, we will focus in this paper on maintainers,
whose task is to take existing libre software packages
and to create a ready-to-install Debian package. Debian
maintainers are also called Debian developers, although
their task is really not to develop software but to take
already developed software for creating a package. This,
of course, does not mean that a Debian maintainer may
not develop and maintain a software, but this is not usually
the case: the original author (or developer) and the Debian
maintainer are commonly not the same persons.

Besides its voluntary nature, the Debian project is unique
among libre software projects because of its Social Contract
[4]. This document contains not only the primary goals
of the Debian project, but also makes several promises to
its users. Additionally, there are a number of documents
Debian maintainers have to follow in order to assure
quality, stability and security of the resulting distribution. In
particular, Debian’s Policy document ensures that the large
number of volunteers working independently will produce a
well integrated system rather than merely an aggregation of
software packages which do not play together very well [5].

The most common task performed by Debian maintain-
ers is to maintain software packages. It involves obtain-
ing the source code from its original authors (known as
‘upstream’), compiling it and creating a Debian package
by following certain rules in order to make the system
consistent. It is unusual that the original software is written
by a Debian maintainer, although some packages, such as
Debian’s package maintenance system dpkg, are. Debian
maintainers generally take source code from others.

There has recently been some interest in studying how
the voluntary nature of the Debian members affect the qual-
ity of the resulting product. Managing volunteer contribu-
tors is associated with certain problems that ‘traditional’
software development usually do not confront [6]. Since
Debian maintainers are volunteers who perform their tasks
in a distributed environment, some new aspects regarding
the management of contributors have to be taken into
consideration, such as the unpredictability of the level of
their involvement [7]. To some degree, the volatility of
voluntary contributors can be limited by the introduction of

more redundancy, such as the creation of maintainer teams.
The creation of teams and committees for specific

purposes such as management or for complex tasks has
been already reported by German’s work on the GNOME
project [1].

III. RESEARCH TARGETS

Given the importance and volume of the Debian project,
it is worth studying the evolution of the people maintaining
packages for it. This paper aims to give some quantitative
insight about the evolution of Debian maintainers during a
six and a half year period (from July 1998 to December
2004). We study how many of these maintainers have re-
mained from the beginning, as well as what has happened to
packages from manintainers that left the project. As stated
before, of the many tasks performed in the Debian project
(ranging from the administration of the infrastructure to the
translation of help texts and documentation into a number
of supported languages), only packaging activities have
been taken into account. These activities are the more
notorious, and most maintainers focus on them. They are
also the most easy to quantify.

The specific questions that we wanted to answer with
this study are the following:

A) How many maintainers has Debian, and how does
this number change over time?
This will provide us with some basic data useful
when working with subsequent questions. When we
started the study, we expected a steady increase of
maintainers over time, as it is already known that
the number of packages included in the system has
been growing that way [8]. In fact, we expected
the packages to maintainers ratio to be somewhat
constant, since it seems reasonable to consider that
volunteers devote similar amounts of effort over time,
which would lead to a constant number of packages
per maintainer.

B) Is there a trend towards the formation of maintainer
teams?
Building teams of maintainers for a package is one of
the ways that has been proposed in Debian for low-
ering the problems of unpredictability of the main-
tainers [7]. The answer to this question should show
whether this proposal has indeed been implemented.
It could also have an impact on the ratio explored
in the previous question. If maintainers devote more
time to team-maintained packages (because there are
more of them), that would mean they have less time
for single-maintainer packages, and therefore have
less of those. Which could lead to a decrease, in the
latest release, of the packages to maintainers ratio.

C) How many maintainers from previous releases remain
active?
We want to measure the volatility of the volunteers
in the Debian project. That is, do maintainers join the
project and work on it for short periods of time, or
on the contrary do they stay for many years? Specifi-
cally, we have calculated the half-life of contributors
in the project (half-life being the time required for
a certain population of maintainers to fall to half of
its initial size). This figure could be easily compared

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



with other libre software projects and, of course, with
statistics from companies from the software and other
industries.
Our study has been made in a per-release basis
instead of investigating the evolution on a time basis,
because we only have data available for each release.
This conforms to the ‘traditional’ software evolution
methodology by Lehman [9].

D) Which is the contribution of maintainers who remain
in subsequent releases?
Answering this question will allow us to know
if ‘older’ maintainers strengthen their contributions
as time passes by, maintaining more packages, or
whether they become less active. There are two
possible hypotheses one could propose. On one hand,
those maintainers who have been involved for a
long time may be very experienced and therefore
more efficient in their work than less experienced
developers. On the other hand, young developers may
have more time or energy to devote to the project and
therefore contribute more. Both theories are possible
and mutually compatible.

E) What happens to packages maintained by maintainers
who leave the project?
Since they are volunteers, maintainers may leave
the project almost anytime, leaving their packages
unmaintained. There are two chances for those pack-
ages: being taken over (adopted) by other maintain-
ers, or being excluded from future stable releases. As
those may not fulfill the requirements of the Debian
policy and the quality standards of the project, they
may be removed from the next release if they are not
adopted by other maintainers. Our intention was to
know how this inherent characteristic of the voluntary
contributors affect Debian, and how this is damped
down by other (possibly new) maintainers. In a sense
this question targets how well Debian regenerates
itself and survives the loss of some of its human
resources.

F) Are more ‘important’ and commonly used packages
maintained by more experienced maintainers?
It can be interesting to know whether packages which
are considered crucial for the functioning of the
system are maintained primarily by volunteers who
have more experience with Debian. For this, we
considered the most used packages as the targets
of the study. It seemed reasonable to think that the
answer would be “yes”, since probably most used
packages were introduced in earlier releases. In any
case, this could lead to have some insight on whether
there is some specialization of veteran maintainers in
packages with more impact on the user experience
of the system, which because of our experience with
the project seemed a reasonable assumption.
Crucial packages are those packages usually installed
on every system, as for instance the base system
which is composed among others of the Linux kernel
and the GNU tools for the Debian GNU/Linux op-
erating system. This does not mean, of course, that
crucial packages are more difficult to maintain than

other packages, but as they are used by any user of the
system and the rest of the software heavily depends
on its proper functioning, these packages have to be
maintained with special care.

IV. METHODOLOGY AND SOURCES OF DATA

Debian consists of four parallel versions (stable, testing,
unstable, experimental) which can be downloaded from the
Internet. The focus of this study is on the stable versions
from Debian 2.0 onwards up to 3.0, and on the current
candidate for Debian 3.1 (as of December 4, 2004)2, which
provide good snapshots of the history of the distribution.
This means a period of time from July 1998 to December
2004. There have been releases of Debian before 1998 [10],
but they have not been taken into consideration for this
study, since the sources of data we have used were not
available for them.

For each release, we have retrieved the corresponding
Sources.gz file (see below) from the Debian archive. From
it, we have extracted the information about the packages
and their maintainers, which we stored in a database.
After that, we performed some semi-automatic cleaning and
massaging of the data that will be explained in more detail
below. Final results were obtained through queries to the
database, and correlations that have been implemented by
another set of scripts3.

The estimations of the size of the releases have been
done using the methodology described in [11], using data
already published in [8], except for release 3.1, which was
calculated specifically for this study.

The data related to the importance of packages has been
retrieved from the Debian Popularity Contest (see below).

A. The Sources.gz file

Since 2.0, the Debian repository contains a Sources.gz
file for each release, listing information about every source
package in it. For each package, it contains: name and
version, list of binary packages built from it, name and e-
mail address of the maintainer, and some other information
which is not relevant for this study.

For identifying the contribution of individual volunteers
we had to find out when a package is maintained not by a
single person, but by a team, and consider them separately.
For that, we merged entries for packages maintained by
a groups to a unique one called ‘Debian team’. We later
use the data for that entry only for answering question 2,
while for the rest of the results we will pay attention just
to individual contributors.

As an example, see below an excerpt of the entry of the
source package for Mozilla from Debian 2.2. It can be seen
among other information how this package corresponds to
version M18-3, provides four binary packages (for the sake
of space the last one is not shown), and is maintained by
Frank Belew.

2At the time of writing, the next stable release, 3.1, is still in prepa-
ration. This is why ‘3.1’ will appear in parenthesis in some tables. Since
the release of 3.1 is considered to be imminent, we believe that the data
included in this study for the current candidate will be quite similar to
those of the final version.

3All the code used has been released as libre software, and can be ob-
tained from http://libresoft.dat.escet.urjc.es/index.
php?menu=Tools

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



[...]
Package: mozilla
Binary: mozilla,mozilla-dev,libnspr4,...
Version: M18-3
Priority: optional
section: web
Maintainer: Frank Belew <frb@debian.org>
Architecture: any
Standards-Version: 3.2.0
Format: 1.0
Directory: dists/potato/main/source/web
[...]

B. Debian Popularity Contest

The Debian Popularity Contest is an attempt to map the
usage of Debian packages. Its main goal is to know what
software packages are actually installed and used.

This system functions as follows: Debian users may
install the popcon package which sends a message every
week with the list of packages installed on the machine
as well as the access time of some files which may give
a hint of the last usage of these packages. Of course,
privacy issues are considered in a number of ways: upon
installation, the user is explicitly asked if she wants to send
this information to Debian, and the server which collects
the data anonymizes it as much as possible.

The resulting statistical information of all users partici-
pating in this scheme is publicly available on the web site
of the project. For every package it includes the number
of machines on which it is installed (inst), the number of
machines which make regular use of that package (vote),
the number of recent updates (recent), the number of
machines where not enough information is available (no-
file) and the maintainer of the package. Below is an excerpt
of the available data, in this case the top ten packages
ordered by number of installations as of December 4th,
2004.

rank name inst vote old recent no-files
1 adduser 6881 6471 94 316 0
2 debianutils 6881 6517 50 314 0
3 diff 6881 6425 261 195 0
4 e2fsprogs 6881 5448 825 608 0
5 findutils 6881 6449 233 199 0
6 grep 6881 6436 126 319 0
7 gzip 6881 6558 245 78 0
8 hostname 6881 6112 715 54 0
9 login 6881 6407 56 418 0
10 ncurses-base 6881 56 143 6 6676

TABLE I
EXCERPT FROM THE DEBIAN POPULARITY CONTEST. FIRST TEN

PACKAGES BY INST(ALLATIONS). THERE IS ALSO A MAINTAINER

COLUMN WHICH HAS BEEN OMITTED FROM THIS TABLE FOR THE

SAKE OF SPACE.

The Debian Popularity Contest gives Debian a way to
see which packages are in use. This information is used
in order to determine the order in which packages are put
on different CDs (i.e. packages with a high popularity and
usage are put on the first or first few CDs); it is also used

during quality assurance activities as a criteria on which
packages to focus.

C. Some constraints

While the acquisition of data is straightforward because
of its public nature, there are some tasks that had to be
performed to ensure the correctness of our results. One
of the main problems we faced was the identification and
merge of the different entries for the same maintainer, due
to changes in the e-mail address or spelling of the name
(addition of the middle name, nickname, etc.).

We also had to resolve inconsistencies between the
information in the Sources.gz file and the data from the
Debian Popularity Contest. While the former contains
entries for source packages, the latter tracks statistics for
binary packages. Fortunately, we could link the source
package to its binary packages by using the information
from Sources.gz.

V. RESULTS

After applying the methodology described in the previ-
ous section, we are presenting in the next subsections the
answers the questions that motivated this study.

To provide some context for these results, figure 1 shows
the evolution of the size of Debian (both in lines of
code and in packages) for the releases studied. In it the
reader can find out how by both metrics the total size of
the distribution seems to double approximately every two
years.

A. Number of maintainers

Figure 2 shows the evolution of the number of Debian
maintainers for the latest five stable releases. As we had
expected, the number of Debian individual maintainers has
been growing in time. 2.0 (July 1998) was put together by
216 individual maintainers, while the number of maintain-
ers for later releases are 859 for 3.0 (July 2002) and will
be of about 1,237 for 3.1 (December 2004). This shows a
growth of about 35% every year.

However, the ratio of packages per maintainer grows
over time, contrary to our initial hypothesis. The growth
of packages is actually bigger than that of volunteers
contributing. It is possible that this finding is related to
improvements of development tools or practices which have
increased the efficiency of package maintainers.

B. Debian Maintainer Teams

The data from table II shows a clear increase in the
number of maintainer teams in Debian. The number of
packages maintained by more than one maintainer has
grown from 14 (1.3%) to almost 600 (7.4%) during the
last six and a half years. This means that the awareness of
the Debian project about the unpredictability of volunteers
has had a response in the creation of these teams, especially
since 2002.

However, it is important to highlight that a very special
team, the QA (quality assurance) team “inherits” packages
without maintainer, and therefore those are not really main-
tained packages (that is why we offer a column for those
packages in table II). But even neglecting the contribution

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



Date Rel Size Pkgs
Jul98 2.0 25 1,115
Mar99 2.1 37 1,580
Aug00 2.2 59 2,647
Jul02 3.0 105 5,220
Dec04 (3.1) 196 8,385

0

2000

4000

6000

8000

10000

JAN−98 JAN−99 JAN−00 JAN−01 JAN−02 JAN−03 JAN−04 JAN−05

Fig. 1. Last five stable Debian releases. On the left, size (in millions of source lines of code) and total number of packages. On the right, number of
packages in each release over time.

Date Rel Mnt Pkgs Pkg/Mnt
Jul98 2.0 217 1,101 5.1
Mar99 2.1 297 1,559 5.2
Aug00 2.2 453 2,601 5.7
Jul02 3.0 859 5,119 6.0
Dec04 (3.1) 1237 7,786 6.3

0

200

400

600

800

1000

1200

1400

1600

JAN−98 JAN−99 JAN−00 JAN−01 JAN−02 JAN−03 JAN−04 JAN−05

Fig. 2. On the left is shown the number of maintainers, packages and its ratio. On the right, the number of maintainers for each version at the time
of its release.

Date Release Packages Packages QA Percentage
Jul 98 2.0 14 14 1.3%
Mar 99 2.1 21 11 1.4%
Aug 00 2.2 46 31 1.8%
Jul 02 3.0 101 71 2.2%
Dec 04 (3.1) 599 194 7.4%

TABLE II
MAINTAINER TEAMS FOR THE LAST FIVE STABLE DEBIAN RELEASES.

THE COLUMN “PACKAGES” IS THE TOTAL NUMBER OF PACKAGES

MAINTAINED BY MAINTAINED TEAMS (INCLUDING QA), THE COLUMN

“PACKAGE QA” IS THE NUMBER MAINTAINED BY THE QA TEAM,
“PERCENTAGE” IS OF PACKAGES MAINTAINED BY ALL TEAMS

(INCLUDING QA)

by this very special team, the growth in the number of
packages actually maintained by teams is clear.

This growth in the number of teams, along with the
evolution of the packages per maintainer ratio leads us to
the conclusion that the involvement of maintainers has been
increasing with time.

C. Tracking remaining Debian Maintainers

At the time of the release of Debian 2.0 in July 1998
there were 216 voluntary maintainers contributing to De-
bian. We have studied how the involvement of these 216
contributors to Debian 2.0 changed over time. Table III
gives an overview of the number of contributors from the
original group left at each release, as well as the number
of packages maintained by them. As the figure shows, the
number decreases steadily, with only 121 of the original
216 contributors (55.8%) still contributing to Debian in
December 2004. Hence, after six and a half years the
half-life value has still not been achieved. If the current

trend persists, that will happen at around 7.5 years (or
90 months). Taking other releases as the starting point
gives similar values, so this seems to be the common
trend. It would be interesting to perform further analysis
about which factors influence how long volunteers remain
active. There is already evidence that some volunteers face
feelings of burn-out [12], but further studies into human-
resource management and motivation in libre software
projects would have positive effects on extending the half-
life of volunteer contributions.

The number of packages for which these maintainers
are responsible is also interesting. The initial number of
packages maintained by the 216 contributors of Debian 2.0
was 1,101. The corresponding number for the maintainers
remaining shrank to 729 for the last version considered.
Again, the number of packages per maintainer has not
decreased with time: the maintainers from the original set
of July 1998 who were still active in December 2004
actually increased the number of packages they maintain.

Date Release Devs Packages Pkg/Dev
Jul 98 2.0 216 1,101 5.1
Mar 99 2.1 207 1,086 5.2
Aug 00 2.2 188 1,040 5.5
Jul 02 3.0 147 870 5.9
Dec 04 (3.1) 121 729 6.0

TABLE III
PACKAGES MAINTAINED BY THE DEBIAN 2.0 MAINTAINERS

D. Researching maintainer experience

In figure 3 it is shown when currently active maintainers
got involved in the project. For every maintainer of a
package in the latest release we have investigated in which

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



release their first contribution can be found. In addition to
the 121 maintainers who have made steady contributions
since July 1998 (release 2.0), 55 participants got involved
before Debian 2.1, and 114 arrived with Debian 2.2. In the
last two stable releases, 393 and 554 new maintainers have
been identified.

Although we had thought that more experienced main-
tainers would have a higher weight on their shoulders, the
package per maintainer column in the table shows similar
numbers. The most active maintainers are those who joined
Debian towards the preparation of Debian 2.2. Further
investigation is required to clarify why there is such a
difference for that release.

E. Packages of maintainers who left the project

When maintainers leave the project, their packages be-
come unmaintained (orphaned). These may be taken up by
others, or will not be present in the next stable release, if
they are not adopted. In table IV the ratios and numbers
of orphaned and adopted packages between any pair of the
studied releases are shown.

From it we have learned that the percentage of adopted
packages is very high: more than 60% for all releases
considered. This happens even for releases with a very
high portion of orphaned packages (for instance, between
2.0 and 3.1). In other words, even though maintainers who
left Debian between July 1996 and December 2004 were
responsible for 33.5% of the packages in 2.0, 67.5% of
these packages can still be found in 3.0. We can thus affirm
that Debian counts on a natural ‘regeneration’ process for
its voluntary contributors and that there is a high probability
that the packages of a maintainer who leave the project will
be adopted by others.

Another interesting fact is that the adopted to orphaned
ratio is always decreasing for a given release. This means
that the number of orphaned packages grows more quickly
than that of adopted, i.e. there are some packages missing in
every new release. Therefore, if a package is unmaintained
and falls off the next release it will probably not enter a
future one. In this study we have only considered removed
packages from maintainers who left the project, but it
is likely that some software will also be abandoned by
maintainers still remaining active, and are therefore not
covered by this study.

In any case, it should be noted that users are left
unsupported when a package (maybe providing a unique
functionality) from a previous release is not present in
subsequent ones. Given this fact, it may be beneficial to
establish mechanisms to ensure that packages which cannot
be supported in the long term will not be introduced in
the first place, or at least only in a section of the Debian
repository which is clearly marked as being less supported.

Obviously, it is hard to determine in advance which
packages are likely to be abandoned in the future. However,
some parameters can be used to judge which projects are
more likely to be sustainable. For example, the probability
that a project which completely relies on the work of one
developer remains active for five years is by far smaller than
that of a bazaar-driven project with 30 core developers and
an active community of contributors.

The key is to develop a framework that may assess
projects regarding their sustainability which takes various
factors into account, such as the number of developers,
or the size of the user base. This assessment can also
include simple security audits to establish whether a piece
of software has sufficient quality so that the maintenance
is possible. Even though no complete framework has been
developed for the Debian project yet, there has been some
work which can be adapted. For example, the Open Source
Maturity Model is a step in that direction [13], [14].

F. Experience and importance

We have used data from the Debian Popularity Contest to
find out whether more ‘important’ packages are maintained
by more experienced volunteers. Table V shows the data
corresponding to installations and use of packages by
maintainers which are still in the project, and which were
already present in the studied releases. In it we can see, for
instance, how 2.0 and 3.1 have 121 common maintainers,
which are responsible for 729 packages which have been
installed 919,856 times and 362,249 are used regularly.

If we take the number of installations per maintainer
and the number of regularly used packages per maintainer
(‘Votes/Maint’) we can answer the question we proposed.
According to our hypothesis these ratios decrease in time,
which means that more experienced volunteers maintain
packages which are installed and used more often. This
can be observed through all Debian releases, with the
exception of 2.2, which has higher values than those of
2.1. This complies with the former evidence from figure 3,
where we saw that maintainers joining between 2.1 and 2.2
were particularly active. As was said, further investigation
is needed to explain this difference in activity for those
maintainers.

This is also an evidence that many of the essential
components of the Debian system were introduced in the
first releases, and that new packages are mostly add-ons
and software that is not installed and used that often.

VI. CONCLUSIONS AND FURTHER WORK

We have conducted a quantitative study of the evolution
of the Debian maintainership over the last six and a half
years. We have retrieved and analyzed publicly available
data in order to find out how Debian handles the volatility
of the volunteers who made it happen.

Some of the most interesting findings are:
• Both the number of Debian maintainers, and the

number of packages per maintainer grow in time, even
if there is a trend towards having maintainer teams.

• The number of maintainers from previous releases
who remain active is very high, with an estimated half-
live of around 7.5 years (90 months). More than half
of the maintainers from Debian 2.0 still contribute to
the current release.

• Developers tend to maintain more and more packages
as they are more experienced in the project.

• However, this does not mean that maintainers who
have been in the project for more time maintain more
packages than newer maintainers. In fact, in the latest
release the highest packages per maintainer ratio is

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



Date Release Devs Packages Pkg/Dev
Jul98 2.0 121 727 6.0
Mar99 2.1 55 338 6.1
Aug00 2.2 114 919 8.1
Jul02 3.0 393 2,544 6.5
Dec04 (3.1) 554 3,258 5.8

Debian 2.0

Debian 2.1

Debian 2.2

Debian 3.0

Debian 3.1

Fig. 3. First stable release for maintainers of packages present in Debian 3.1

Release 1 Release 2 Orphaned Adopted A/O O/Tot1 O/Tot2
2.0 2.1 15 14 93.3% 1.3% 1.0%
2.0 2.2 61 40 65.6% 5.5% 1.5%
2.0 3.0 231 171 74.0% 21.0% 4.5%
2.0 (3.1) 372 251 67.5% 33.8% 3.2%
2.1 2.2 47 31 66.0% 3.0% 1.8%
2.1 3.0 302 220 72.8% 19.4% 5.9%
2.1 (3.1) 493 327 66.3% 31.6% 6.3%
2.2 3.0 281 207 73.7% 10.8% 5.5%
2.2 (3.1) 617 403 65.3% 23.7% 7.9%
3.0 (3.1) 596 383 64.3% 11.6% 7.6%

TABLE IV
ORPHANING AND ADOPTION OF PACKAGES. EACH ROW SHOWS PACKAGES PRESENT IN THE OLDER RELEASE (FIRST COLUMN) AND NOT IN THE

NEWER (‘ORPHANED’ COLUMN), AND WHICH OF THOSE WERE ADOPTED. LAST COLUMNS SHOW THE PERCENTAGES OF PACKAGE ‘SAVED’
(ADOPTED TO ORPHANED, A/O), AND ORPHANED IN THE NEWER RELEASE TO TOTAL IN THE OLDER (O/TOT1) AND NEWER (O/TOT2) RELEASES.

Release CMaint CPkg Installations Votes Inst/Maint Votes/Maint
2.0 121 729 919,856 362,249 7602.1 2993.8
2.1 176 1,066 1,306,067 498,061 7420.8 2829.9
2.2 290 1,984 2,135,137 805,642 7362.5 2778.0
3.0 683 4,528 3,712,435 1,280,173 5435.9 1874.3
(3.1) 1237 7,786 4,566,601 1,487,246 3691.7 1202.3

TABLE V
INSTALLATIONS AND REGULAR USE OF PACKAGES. THE CMAINT COLUMN SHOWS HOW MANY MAINTAINERS 3.1 HAD IN COMMON WITH THE

RELEASE IN THE FIRST COLUMN, WHILE THE CPKG SHOWS THE NUMBER OF PACKAGES MAINTAINED BY THEM. COLUMNS INSTALLATIONS AND

VOTES GIVE THE SUM OF THE PACKAGES INSTALLED AND VOTED (USED REGULARLY) FOR THOSE PACKAGES MAINTAINED BY COMMON

MAINTAINERS. THE LAST TWO COLUMNS SHOW THE RATIOS OF BOTH TO COMMON MAINTAINERS.

shown by those entering the project around the year
2000.

From these facts, it can be said that Debian maintainers
tend to commit to the project for long periods of time.
However, there is a worrisome trend towards a higher
and higher ration of packages per maintainer, which could
imply scalability problems as the number of packages in
the distribution increases, if the project doesn’t admit a
proportional number of developers.

Another issue on which we have focused is what happens
to those packages that were maintained by developers who
left the project. Most of them are taken over by other
maintainers so that we can state that a natural ‘regener-
ation’ exists. Based on the data we have researched, those
packages which are not adopted by other maintainers in the
next release, and are therefore not present in it, are unlikely
to be re-introduced in future releases.

Finally, we have also found that more experienced main-

tainers are responsible for packages which are installed and
used regularly more often.

In addition to the new insights gained in this investi-
gation, we have proposed a number of further studies to
elaborate the findings of the present paper. In particular,
team maintenance and its impact on the quality of packages
would be interesting to research. It is also not clear why
there is an increase in the ratio of packages per maintainer.
Possible explanations are that better tools and practices lead
to more efficiency or that with the success of libre software
new volunteers show more motivation and commitment,
but more data is needed before these explanations can be
conclusive.

From a more general point of view, this study explores
the behavior of volunteers in libre software projects, and
provides some answers to why this kind of voluntary
contributions are capable of producing such large, mature
and stable systems over time, even when the project has

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107



no means for forcing any single developer to do any given
task or may leave the project during important development
phases. It is impossible to infer the behavior of volunteer
developers just from the study of a single project, but given
the size and relevance of the Debian project, at least some
conclusions can be exposed as hypothesis for validating in
later research efforts.

One of them is the stability of volunteer work over time.
The mean life of volunteers in the project is probably larger
than in many software companies, which would have a
clear impact on the maintenance of the software (it would
be likely that developers with experience in a module be
available for its maintenance over long periods of time).
Another one is that volunteers tend to take over more
work with the passing of time if they manage to stay in
the project: in other words, they voluntarily increase their
responsibilities in the project. Whether this is because it
is easier for them because of their experience, or because
they devote more effort to the project, is for now an open
question. Yet a third one is the stability of the voluntary
effort when some individuals leave the project: most of
their work is taken over by other developers. Therefore,
despite being completely based on volunteers, the project
organizes itself rather well with respect to leavings, which
is an interesting lesson about how the project can survive
in the long term.

As a final summary, we have found that given that there
are no formal ways of forcing a developer to assume any
given task, voluntary efforts seem to be more stable over
time, and more reliable with respect to individuals leaving
the project than we had expected in advance.

VII. ACKNOWLEDGEMENTS

The work of Gregorio Robles and Jesus M. Gonzalez-
Barahona has been funded in part by the European Com-
mission under the CALIBRE CA, IST program, contract
number 004337, in part by the Universidad Rey Juan Carlos
under project PPR-2004-42 and in part by the Spanish
CICyT under project TIN2004-07296. The work of Martin
Michlmayr has been funded in part by Fotango, the NUUG
Foundation and the EPSRC. We also want to thank the
anonymous reviewers for their extensive comments.

REFERENCES

[1] D. M. German, “Decentralized Open Source global software de-
velopment, the GNOME experience,” Journal of Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 201–215, 2004.

[2] M. Monga, “From Bazaar to Kibbutz: How freedom deals with
coherence in the Debian project,” in Proc 4th Workshop on Open
Source Software Engineering, Edinburg, UK, 2004.

[3] S. O’Mahony, “Guarding the commons: how community managed
software projects to protect their work,” Research Policy, no. 32, pp.
1179–1198, 2003.

[4] “Debian Social Contract,” http://www.debian.org/social contract.
[5] G. Garzarelli and R. Galoppini, “Capability coordination in modular

organization: Voluntary FS/OSS production and the case of Debian
GNU/Linux,” November 2003.

[6] M. Michlmayr and B. M. Hill, “Quality and the reliance on
individuals in free software projects,” in Proc 3rd Workshop on
Open Source Software Engineering, Portland, USA, 2003, pp.
105–109. [Online]. Available: http://www.cyrius.com/publications/
michlmayr hill-reliance.pdf

[7] M. Michlmayr, “Managing volunteer activity in free software
projects,” in Proc USENIX 2004 Annual Technical Conference,
FREENIX Track, Boston, USA, 2004, pp. 93–102. [Online].
Available: http://www.cyrius.com/publications/michlmayr-mia.pdf

[8] J. M. González-Barahona, G. Robles, M. Ortuño Pérez, L. Rodero-
Merino, J. Centeno González, V. Matellan-Olivera, E. Castro-
Barbero, and P. de-las Heras-Quirós, “Analyzing the anatomy of
GNU/Linux distributions: methodology and case studies (Red Hat
and Debian),” in Free/Open Source Software Development, S. Koch,
Ed. Hershey, PA, USA: Idea Group Publishing, 2004, pp. 27–58.

[9] M. Lehman, J. Ramil, P. Wernick, and D. Perry, “Metrics and laws of
software evolution - the nineties view,” in Proceedings of the Fourth
International Software Metrics Symposium, Portland, Oregon, 1997.

[10] C. Lameter, “Debian GNU/Linux: The past, the present and the
future,”
http://telemetrybox.org/tokyo/, 2002.

[11] J. M. Gonzalez-Barahona, M. A. Ortuño Perez, P. de las
Heras Quiros, J. Centeno Gonzalez, and V. Matellan Olivera, “Count-
ing potatoes: the size of Debian 2.2,” Upgrade Magazine, vol. II,
no. 6, pp. 60–66, Dec. 2001.

[12] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software
developers in open source projects: an Internet-based survey of
contributors to the Linux kernel,” Research Policy, vol. 32, no. 7,
pp. 1159–1177, 2003.

[13] “The Open Source maturity model: A methology for assessing open
source software,”
http://www.navicasoft.com/pages/osmm.htm.

[14] B. Golden, Succeeding with Open Source. Addison-Wesley Profes-
sional, 2004.

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107


