
Quality and the Reliance on Individuals in Free Software Projects

Martin Michlmayr
Departmentof ComputerScience

andSoftwareEngineering
Universityof Melbourne
Victoria,3010,Australia
martin@michlmayr.org

BenjaminMako Hill
HampshireCollege

Amherst,Massachusetts,USA
mako@debian.org

Abstract

It hasbeensuggestedthat the superiorquality of many
FreeSoftware projectsin comparisonto their proprietary
counterpartsis in part due to the Free Software commu-
nity’s extensivesource code peer-review process. While
manyarguethat software is bestdevelopedby individuals
or small teams,the processof debugging is highly paral-
lizable. This “one and many” modeldescribesa template
employedby manyFree Software projects. However, re-
liance on a single developeror maintainercreatesa sin-
gle point of failure that raisesa numberof seriousquality
andreliability concerns– especiallywhenconsideredin the
context of thevolunteer-basednatureof mostFreeSoftware
projects.Thispaperwill investigatethenature of problems
raisedby this modelwithin theDebianProjectandwill ex-
plore several possiblestrategiesaimedat removing or de-
emphasizingtherelianceon individualdevelopers.

1. Introduction

In thelastfew years,theFreeSoftwareandOpenSource
developmentmodelshave establishedthemselvesasviable
alternatives to proprietarysoftwaredevelopmentstructures.
In fact, the suggestionthat the quality of Free Software
projectsmeetsor exceedsthatof proprietaryalternatives is
heardincreasinglyfrequentlyandis becomingincreasingly
difficult to deny [12, 9, 11]. With his now famousmantra,
“given enougheyeballs,all bugs are shallow”, Eric Ray-
mondwas able to highlight the importantrole that highly
parallelizeddevelopmentplaysin thecreationof highqual-
ity Freeand OpenSourceSoftware [10]. However, soft-
waredevelopmentdoesnot benefitfrom parallelizationin
thesameway thatdebuggingdoes.It is a well-known fact
that merely addingfurther programmersto a project will
neitherimprove its qualitynorshortenthereleasecycle [5].
In fact, the reverseappearsto be the caseasstudieshave

confirmedthat mostFreeSoftwareprojectsarein fact de-
signedanddevelopedby very small teamsor anindividual
developer[7].

Theseindividualsandsmall teamsbenefitfrom theeffi-
ciency thatis adirectproductof theincreasedlevel of intra-
project communicationensuredby the low level of com-
plexity in decisionmakingstructures.However, this cen-
tralizeddevelopmentmodelcreatesasinglepointof failure
with seriousqualityassuranceimplications.Thesearecom-
poundedby thefactthatmostFreeSoftwaredevelopmentis
performedby volunteerswhocannotberelieduponfor con-
sistentlevelsof work in thesameway thatnon-volunteersin
mostcommercialprojectscan[7]. As observedpreviously,
themajorityof FreeSoftwareprojectsaredirectedby asin-
gle“leaddeveloper”– usuallythesoftware’soriginalauthor
– who assumestherole of “maintainer”andwho integrates
patchessubmittedfrom developersin his or herusercom-
munity andwho organizesandcoordinatesreleasesof the
software. As a result of the centralizeddecisionmaking
structure,developmentstallsin theabsenceof the leadde-
veloper. Thesetypesof developmentaldelaysandtheaban-
donmentof popularFreeSoftwareprojectswith established
usercommunitiesareremarkablycommon.Workingto pre-
dict or preventtheseabandonmentsis difficult. Thereasons
why a developermight temporarilyor permanentlycease
work on a projectareasunpredictableasthey aremultifar-
ious; they might be overwhelmedwith work in their “real
life” profession,they mighthavelost interestin theprogram
or theirprioritiesmightsimplyhavechanged.To compound
matters,distinguishinga temporarysabbaticalfrom a full
abandonmentis often difficult. Developersoften cling to
a project they areemotionallyinvolved in by urging their
useranddevelopercommunityto bepatientbut never find
thetime.

In the following analysis, we will evaluate the De-
bianProject’s approachesto centralizedandindividualized
project maintenanceas a quality assuranceissue. We re-
alize that replacingleaddeveloperswith teamsor expand-

105



ing thesizeof existing teamsis anunrealisticallysimplistic
solution: it introducescomplexity andrelatedintra-project
communicationissues. It alsoworks to counterthe bene-
fits which have madeFreeSoftwarecommunity’s “one and
many” developmentanddebuggingsystemsoeffective. We
realizethat in many ways, Debianis a uniqueFreeSoft-
wareproject.However, becauseDebianis solargeandpulls
developersfrom acrossthe world andthe full spectrumof
theFreeandOpenSourceSoftwarecommunity, webelieve
thatlessonslearnedfrom Debiancanbegeneralizedandap-
plied to FreeandOpenSourceSoftwaredevelopmentmore
broadly.

2. Debian and its Package Maintainers

With over 10,000packages,theDebianProjectoffersthe
largestGNU/Linux distribution available [8]. As Debian
serveslargelyasanaggregationof existingsoftware,its de-
velopers’primary task is integration. Applicationswhich
conform to the DebianFreeSoftware Guidelines[3] are
pulled in from the community(from so called“upstream”
developers)and integratedas “packages”into the Debian
systemaccordingto an establishedset of policy guide-
lines [4]. In themajority of cases,an individual is respon-
siblefor eachDebianpackage– aclassificationthatusually
correspondsto one application. The meta-informationof
eachDebianpackagecontainsa “Maintainer” field which
lists thenameande-mailaddressof theindividual in charge
of thesoftware. As a resultof this hard-codeddependence
on individuals,theproblemsrelatedto therelianceon indi-
vidual developersdescribedin the introductorysectionap-
ply to Debianandupstreamdeveloperssimilarly.

At the moment,a senseof ownershipaccompaniesthe
maintainershipof a package. In many cases,maintainers
have a strongattachmentto their packagesandbecomeup-
setwhenanotherDebiandeveloperintervenesin their job
of maintainingthe software,frequentlyresultingin heated
exchangeson mailing lists. However, sinceDebian is a
volunteer-basedeffort anda highly integratedandcoordi-
natedsystem,theprojecthasinstitutedmechanismstoallow
developersto assisteachother with their packageswhen
required. Hence,Debian has introducedthe conceptof
Non-MaintainerUploads(NMUs). As the nameimplies,
an NMU is an upload done by a personwho is not the
maintainerof the package.The DebianDeveloper’s Ref-
erence[2], a documentdescribingthe recommendedpro-
ceduresandavailableresourcesfor Debiandevelopers,has
a whole sectiondevotedto NMUs. It doesnot simply de-
scribehow NMUs aredone,but alsowhenthey areappro-
priate.TheDeveloper’s ReferencesuggeststhatNMUs are
especiallyjustified for securityfixesandduring theprepa-
ration of releaseswhen a packagesmaintainerappearsto
be inactive or inaccessible.The referenceurgesthat spe-

cial carebe taken when doing an NMU becausethe per-
sonpreparingthe NMU might not be asfamiliar with the
packageasits maintainer. It is extremelyembarrassingand
irresponsibleto breakapackageduringanNMU.

While the mechanismfor performing Non-Maintainer
Uploadshasbeenin placefor a very long time, thepercep-
tion of NMUs haschangedover time. Currently, many de-
velopersinterpretNMUs asasignthatthey arenotperform-
ing their work properly. While this is not alwaysthecase,
this perceptionis widespreadamongbothusersanddevel-
opers.In thepast,thiselementof stigmawasnotconnected
to NMUs. As a result,developerswerewelcome,evenen-
couraged,to performNMUs – an attitudethatsomedevel-
operscontinueto hold. The acceptanceof NMUs demon-
stratesa practicalunderstandingof and approachto Free
Software. It is not alwayspossiblefor a volunteerto per-
form theirdutiesconsistentlyandthusit shouldbeappreci-
atedwhensomeonelendsaneededhand.Thecauseof shift
towardaview of NMUs asmoreremedialandpenalizingis
unclear. Oneplausibleanalysisconnectsthis shift with the
greatgrowth of Debian. While the projectplateauedearly
onataround200Debiandevelopers,thegrouphasexploded
recentlyto nearly1000. Consequently, it is no longerpos-
siblefor developersto know, or evenknow of, eachof their
co-developers. This fact alonehashada radicaleffect on
thenatureandself-perceptionof theDebiancommunity. It
standsto reasonthat many developerswill find NMUs by
developersthat they know more acceptablethan thoseby
developersthey areunfamiliar with. Even thoughthe per-
sonperformingan NMU might be competentandexhibit-
ing goodtechnicaljudgment,theactof a“stranger”making
uploadsof a developersown packagescanmoreeasilybe
perceived asaviolentaction.

SinceDebian’ssizeis only likely to increase,theproject
hasbeenforcedto find a mechanismto allow maintainers
to explicitly specifyan individual or groupthey find trust-
worthyandwhocanstepin asa“backupmaintainer”.Such
a mechanismhasbeenintroducedinto theprojectrecently
in the form of an addedfield in a packages“control” file.
While the meta-informationof a packagestill containsa
“Maintainer” field, thereis now alsoan optional“Upload-
ers” field. While it is still possiblefor everyoneto do an
NMU of a specificpackage,anuploaddoneby a developer
listedasanuploaderfor thispackagewill betreatedasareg-
ularuploadratherthananNMU. Specifyingexplicit backup
maintainersis usefulandincreasinglyencouragedbecause
the QA or securityteamhasa list of competentor expe-
rienceddevelopersto contactwhenthe package’s primary
maintaineris unreachable.

105



2.1. Explicit Group Responsibility

In the solutiondescribedabove, thereis still a primary
individual maintainerandthe “Uploaders”act morein the
role of backup. However, its often useful,both in routine
packagemaintenanceandfor qualityandreliability reasons,
for thesesecondarymaintainersto take a moreactive role.
Thatis, therecanalsobeateamof maintainersfor aspecific
package.This typeof maintenanceis particularlyadvanta-
geousfor larger andmoreimportantpackages.For exam-
ple,packagesin Debian’s central“base”system,which are
installedon every Debianmachineandwhich includees-
sentialprogramslike GNU tar or Debian’s packagemain-
tenancesystemdpkg, are likely to get a high numberof
moreimperativebug reportsthanlessfrequentlyusedpack-
ages.Consequently, it is oftenbeneficialto have morethan
one developerworking on triaging the bug listing. How-
ever, distributing thework amongseveraldevelopersis not
constructive for every task of the packagemaintainer. It
hasbeensuggestedthat QA work requireslesscoordina-
tion than the actualdevelopment[12]. Thus, the task of
maintainingthebug listing andfixing bugsmightbeshared
betweenseveral developers,while an individual might be
explicitly responsiblefor packagingthefixedsoftwareand
makingtimely uploads.

While certainobviousadvantagesflow from teammain-
tenanceanddevelopment,themodelis not without its dis-
advantages. For example,by challengingconceptionsof
ownership,groupsmight decreasemaintainers’feeling of
responsibilityfor their packages.While a singledeveloper
createsa singlepoint of failure, he or sheis alsoa singly
clearresponsibleparty. Whenapackageis maintainedby a
group,membersof theteammightpostponeimportantwork
becausethey assumethatsomeoneelsewill do it. Further-
more,decreasingthe attachmentmaintainersoftenhave to
their packageswith thegoalof facilitatingNMUs tendsto
decreasethesenseof ownershipthatcanactasausefulmo-
tivating factor. In thesesituations,finding an appropriate
balanceis crucial. In doing so, it is essentialto remember
thatthequestionsof responsibilityandmotivationareques-
tionsthataretightly linkedto issuesof personalityandvary
greatlyamongdevelopersacrossandwithin cultures.This
is particularlyevident in diverseinternationalprojectslike
Debian.

2.2. Facilitating Group Communication

Unfortunately, moving from individual to teammainte-
nanceresultsin an inevitable increasein communication
complexity [5]. Therefore,it is crucial to provide solid
mechanismsfor increasingtheeffectivenessof intra-group
communicationbeforecreatingor augmentingteams[6].
One useful methodis to carefully and critically limit the

typeof tasksthatwill besharedandthetypesof tasksthat
will remainin thedomainof individuals.For example,QA
work, especiallyreproducingbugsandgettingmoreinfor-
mation from the bug submitters,can be distributed fairly
well, while this parallelizationis muchmoredifficult to ac-
complishfor developmentor design.By takingthepressure
off of leadmaintainersin parallizableareas,maintainersare
given more time to devote to designissuesandhis or her
own irreplaceabilityis tempered.

Toward theseends,theremust be establishedand effi-
cientsystemsfor communicationbetweengroupmembers.
Sincelikemosthigh-profileFreeSoftwareprojects,Debian
developmentis not tied to aparticularlocality, communica-
tion usuallyoccursthroughe-mail andIRC. Additionally,
DebianProjectcorrespondencein regardsto bug reportsare
handledthroughDebian’sBugTrackingSystem[1]. Dueto
thefact that theBug TrackingSystem(BTS) is universally
accessibleandpublicly archived,teammemberscaneasily
follow work doneby othermembersof thegroup.A useful
mechanismbuilt into Debian’s BTS andotherpopularFree
Softwarebug trackingsystemslike Bugzilla allows people
to subscribeto bug reportsfor a specificpackage.In this
way, usersand teammembersreceive all correspondence
by e-mail andcaneasilytrack packageswithout visiting a
web site. In addition to teammembers,this functionality
providesamechanismfor interestedusersandupstreamde-
velopersto becomeinvolved with their software’s Debian
packageandto stayinformedof bugs. Whenan upstream
issue(as opposedto a Debianspecific issue)is reported,
they canfollow up directlyandprovidepatches.Thisserves
to facilitatemoreactive collaborationbetweena package’s
Debianmaintainerandupstreammaintainerin a way that
is mutually beneficial. The upstreamdeveloper benefits
from thedirectlink to userstestingtheir softwarewhile the
Debianmaintainerprofits from having theupstreamdevel-
oper’s inputon resolvingdifficult bugs.

2.3. Case Studies and Examples

Sincethe relatively recentintroductionof the collabo-
rative mechanismsdescribedabove, numerousDebianand
upstreammaintainershave taken advantageof them. The
following threeexamplesare representative of the impor-
tanceandexperienceswith thesesystems.

In the first example, the upstreammaintainerof GNU
Privacy Guard (GnuPG) subscribedto Debian’s GnuPG
packagein the BTS. As a result, he was better informed
of bugsin hissoftwareandwaspleasedto find thathecould
leveragethe Debianinfrastructureas a platform for users
to testhis software. Furthermore,he respondedto bug re-
portswhenthey pertainedto upstreamissues.He alsore-
spondedto featurerequeststhroughimplementingthefunc-
tionality upstream(thereforealsomakingthefeaturesavail-

107



ableto non-Debianusers). Finally, it is worth noting that
this team-maintenancewasstagedin amannerthatallowed
for a firm division betweenthe Debianand the upstream
maintainers.In only a handfulof occasionsdid bothmain-
tainersrespondto a bug reportsimultaneously. As a result,
the two maintainershave beenableto carryout their tasks
moreefficiently in thecontext of anincreasedcommunica-
tion effort.

A similarsecondexampleinvolvesGNUmaintainerPaul
Eggertwho is responsiblefor a numberof importantGNU
programsincluding tar, gzip, bison and others. Paul has
startedto scanthe DebianBug Tracking Systemfor up-
streambugsandtakesthesebug reportsinto consideration
when preparingnew upstreamreleases.In fact, when he
preparesa new releaseof one of his tools, he mails the
Debianmaintainerwith a detailedlisting describingwhich
bugsareaddressedin thenew version.This is a perfectex-
ampleof how thedirectinvolvementof theupstreammain-
taineranda concertedeffort at team-basedwork andgood
intra-projectcommunicationleadsto a product of much
greaterquality.

TheGNU C library providesa final example.While the
GNU C library Debianpackagehasbeenmaintainedby a
singlemaintainerin thepast,thetaskwasdauntinganddif-
ficult to perform effectively. Recently, a group of main-
tainershasbeendelegatedresponsibilityfor the complex
and importantpackage.In fact, the “Maintainer” field no
longer list a specificmaintainer, but a mailing list. This
mailing list is openandpublic soevendeveloperswho are
not dedicateduploadersof theglibc packagecanfollowing
thediscussionsandprovide commentsandpatches.In the
monthsthat glibc hasbeenunderteammaintenance,ded-
icatedglibc maintainershave continuedto independently
commitpatchesto CVS. However, while a handfulof peo-
ple feel empoweredto work on the package,no onefeels
responsibleto coordinateor work towardreleases.Alluded
to above, this issuemight be resolved by with the desig-
nationof a individual as responsiblefor coordinatingand
executinguploads.

3. Application

Many of the insights gainedfrom Debian can be ap-
plied to otherFreeSoftwareprojects.While therearemany
projectswith only onedeveloperin aleadershiprole,thead-
dition of secondarymaintainershasadvantagesthatshould
be clear from Debian’s example. Thesesecondarymain-
tainerscan act as “backup” primary maintainersand can
assistin pushingout new releaseswhentherearesecurity
relatedissues.Additionally, having a specifiedbackupde-
veloperprovidesanobvioussuccessorfor a projectwhose
primarydeveloperbecomesbusy, missing,or otherwiseun-
available.While it hasbeenarguedthatthecommunityhas

establishedgood proceduresfor adoptingprojectswhich
havebeenabandonedby theirprimarydeveloper[10], spec-
ifying a successorhascertainadvantages.First of all, the
original authorcandirect the futureof theprojectby pick-
ing a successorthey approve of. Furthermore,the backup
maintainerwill have accessto the developmentinfrastruc-
ture which will make any necessarytransitioneasier. Not
only should backupdevelopersbe able to make new re-
leases,they shouldalsobe ableto control the domainand
web site of a project. It is not uncommonfor a new de-
veloperto adopta projectbut for theprojectinfrastructure,
includingtheproject’s domainname,to remainin thecon-
trol of a previousmaintainer, who hasdisappearedandcan
notbereached.Theeffectsof suchasituationcanbedisas-
trousbut caneasilybeavoidedby encouragingmaintainers
to appointa backupmaintainerandempoweringthemwith
full accessandprivileges.

4. Conclusions

The strongrelianceon individual developersis a qual-
ity assuranceconsiderationin thatit is unrealisticto expect
completepredictabilityandreliability from volunteers.De-
bian’sexperiencehasdemonstratedthattrustedandcompe-
tent backupmaintainersexplicitly establishedby the pri-
mary maintainercan provide one successfultemplateof
dealing with this problem. Furthermore,thesebackup
maintainerscanplay an active role in the daily upkeepof
the software. For example,QA efforts, suchasreproduc-
ing bug reportsandfollowing up with bug submitters,are
highly parallizableand benefit from being dealt with by
groups,especiallywhenan importantor complex package
is involved.

Unfortunately, thereare also downsideswhen moving
from individual to teammaintainership. The most obvi-
ousproblemis an increasein complexity andthe needfor
additionalcommunication.Additionally, somemaintainers
feel a lossin responsibilityandmotivation anda tendency
to wait for other teammembersto accomplishunpleasant
tasks.

Becauseargumentsfor group maintenanceof software
hasbothrecognizedbenefitsanddownsides,it is important
to studythe effectsandexperiencesof groupmaintenance
in FreeSoftwareprojects. The threeshortcasesanalyzed
imply largelybeneficialresults.It remainsto beestablished
how representative thesepackagesare within Debianand
how applicabletheirexamplesareto FreeSoftwareprojects
moregenerally. In any case,thepotentialfor collaborative
andgroupmaintenancein successfullyresolvinga serious
quality assuranceissueis obvious and its importanceand
prominencein successfulprojects,in oneform or another,
seemslikeagoodpossibility.

108



References

[1] DebianBug TrackingSystem.http://bugs.debian.
org/.

[2] DebianDevelopers’Reference.http://www.debian.
org/doc/developers-reference.

[3] Debian Free Software Guidelines. http://www.

debian.org/social_contract.
[4] Debian Project Policy. http://www.debian.org/

doc/debian-policy/.
[5] F. P. Brooks. The Mythical Man-Month: Essayson Soft-

ware Engineering. Addison-Wesley PublishingCompany,
2ndedition,2000.

[6] G. N. Dafermos. Managementand Virtual Decentralised
Networks: The Linux Project. First Monday, 6(11),
November2001. http://www.firstmonday.org/

issues/issue6_11/dafermos/.
[7] R. Ghosh,R. Glott, B. Krieger, andG. Robles. Free/Libre

andOpenSourceSoftware: Survey andStudy. Technical
report, InternationalInstitute of Infonomics,University of
Maastricht,The Netherlands,June2002. http://www.
infonomics.nl/FLOSS/report/.

[8] J. M. González-Barahona,M. A. Ortuño Pérez,P. de las
HerasQuirós,J. CentenoGonzález,andV. MatellánOliv-
era. CountingPotatoes:TheSizeof Debian2.2. Upgrade,
II(6):60–66,December2001.
http://people.debian.org/~jgb/

debian-counting/counting-potatoes/.
[9] T. J. HalloranandW. L. Scherlis. High quality andopen

sourcesoftwarepractices.In 2ndWorkshoponOpenSource
SoftwareEngineering. ICSE,2002.

[10] E. S. Raymond. TheCathedral and the Bazaar. O’Reilly,
1999.

[11] Reasoning. How open-sourceand commercialsoftware
compare.

[12] D. C. SchmidtandA. Porter. Leveragingopen-sourcecom-
munities to improve the quality & performanceof open-
sourcesoftware. In 1stWorkshopon OpenSourceSoftware
Engineering. ICSE,2001.

109


