
Quality Improvement in Volunteer Free Software
Projects: Exploring the Impact of Release

Management
Martin Michlmayr

Centre for Technology Management
University of Cambridge

Cambridge, CB2 1RX, UK
martin@michlmayr.org

Abstract— Even though free software has achieved great
popularity and success in recent years, there are a number
of product quality challenges facing the open source devel-
opment model. There is significant room for further quality
improvement and one area that deserves special attention is
release management. This research will identify problems with
current release practices, verify possible advantages of an
increasingly popular release model, and develop interventions
to improve release management in free software projects. The
research also aims to answer the fundamental question as to
how volunteer projects can deliver predictable and high quality
software.

Index Terms— release management, process improvement,
quality assurance, volunteer projects, free software, open
source.

I. BACKGROUND AND MOTIVATION

This doctoral research focuses on quality management in
free software and open source projects. While some open
source projects show a high level of quality, often on par
or even surpassing that of closed source and proprietary
software [4], [9], there are a number of unique challenges
facing open source projects [7], [6]. One central question
is how free software and open source projects can ensure
a consistently high level of quality when many of the
participants are volunteers whose involvement in a project
continually changes in an unpredictable fashion [6].

This research aims to identify existing quality related
problems in free software projects and to use the out-
comes as a starting point for the development of quality
improvement strategies. In exploratory interviews with a
number of free software and open source developers, release
management has been found to be a problematic area; this
research will therefore focus on this topic in particular as
one aspect of quality management.

There are several reasons as to why release management
in distributed, volunteer free software projects may often
be associated with problems. First of all, many of those
who maintain software projects are programmers, who do
not necessarily have the coordination and management
skills required for release management [10]. Secondly, extra
commitment from project participants is necessary during
a release so that deadlines are met, but volunteers may
not be able to put in more work than usual. Finally, there
is often a dichotomy between the requirements of users
and developers. Since developers mainly use development

releases, they might not see the need for well tested and
stable releases aimed at less technical and corporate users.

Inadequate release management can lead to a number of
problems, such as software which is out of date, breaks
compatibility, or does not meet the quality standards or the
requirements of users. This research aims to identify such
problems and good practices in open source projects, and
develop further processes and techniques to improve release
management in free software and open source projects.
There will be a close interaction with the free software
community to ensure that the outcomes of this research will
be used by projects to improve release management.

II. PROPOSEDRESEARCH

In interviews with twenty experienced free software and
open source developers from a variety of projects, release
strategies and processes, along with a number of problems
with current release cycles, have been identified. Some de-
velopers described the advantages of a new release strategy,
time-based release, over the more traditional feature-based
release strategy. In time-based releases, a clear scheduleis
followed and a release is made according to a strict time
plan, while feature-based releases are oriented towards the
completion of certain features.

It has been suggested that time-based releases are partic-
ularly suited for large and modular projects because they
allow individual developers to independently follow the
schedule which has been set. This decreases the amount
of coordination necessary for a release. Furthermore, pre-
dictable and steady releases seem to lead to greater motiva-
tion and faster development since developers know when
their features must be ready in order to make the next
release. According to this hypothesis, time-based releases
offer a number of advantages to users: releases are more
predictable, the development leads to more features and
better code, and the release schedule allows for more
systematic testing of the software.

This research will test whether time-based releases are
actually associated with such advantages. The circumstances
under which time-based releases should be chosen over
more conventional release strategies will be studied. Fol-
lowing this, the question of how a project can successfully
move to a predictable time-based release will be addressed.
A number of open source projects that follow good release
practices will be observed; interventions that can improve

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), 309-310



1993

16
 A

ug
us

t 1
99

3:
 D

eb
ia

n 
an

no
un

ce
d

1994

19
 J

an
ua

ry
 1

99
4:

 D
eb

ia
n 

0.
91

1995

26
 O

ct
ob

er
 1

99
5:

 D
eb

ia
n 

0.
93

R
6

1996

17
 J

un
e 

19
96

: D
eb

ia
n 

1.
1 

"b
uz

z"

12
 D

ec
em

be
r 1

99
6:

 D
eb

ia
n 

1.
2 

"r
ex

1997

2 
Ju

ne
 1

99
7:

 D
eb

ia
n 

1.
3 

"b
o"

1998

24
 J

un
e 

19
98

: D
eb

ia
n 

2.
0 

"h
am

m
"

1999

9 
M

ar
ch

 1
99

9:
 D

eb
ia

n 
2.

1 
"s

lin
k"

2000

15
 A

ug
us

t 2
00

0:
 D

eb
ia

n 
2.

2 
"p

ot
at

o"

2001 2002

19
 J

ul
y 

20
02

: D
eb

ia
n 

3.
0 

"w
oo

dy
"

2003 2004 2005

Sp
rin

g 
20

05
 (?

): 
D

eb
ia

n 
3.

1 
"s

ar
ge

"

Fig. 1. Debian has experienced increasingly delayed and unpredictable releases in recent years

release management will then be proposed. These will
subsequently be tested in live projects using action research.

III. R ESEARCHMETHODS

Broadly speaking, the research can be subdivided into
the following three phases which in turn employ particular
research methods.

A. Identification of processes and problems

In this phase, current release processes and strategies will
be investigated. Problems related to these processes will
also be identified. This phase will mostly employ interviews,
along with surveys, in order to obtain an in-depth input from
a wide variety of sources, such as developers and end-users
of free software and open source.

B. Investigation of time-based release strategy and testing
of hypotheses

Based on the results from the first phase, hypotheses
will be generated that will subsequently be tested. At
the time of writing, there are a number of preliminary
hypotheses that will be clarified and refined further before
the research moves to phase two. This phase is characterized
by a positivist approach in which hypotheses are tested
in quasi-experiments. Comparable projects employing time
and feature-based releases will be compared using empirical
data. For these studies, a number of methods will be used
to mine and analyze data. For example, a tool has been
developed to reconstruct the status of bug reports on any
given date, thereby allowing the investigation of a project’s
evolution over time. Furthermore, existing tools to analyze
the development process and evolution based on data from
version control systems, such as CVS, will be used [2], [8].

C. Development of interventions

In the third phase, case studies will be performed to study
good practices. Based on these studies, interventions willbe
developed to improve release management. They will subse-
quently be tested in live projects. On the assumption that the
results of phase two demonstrates that time-based releases
are indeed a viable strategy offering certain advantages over
other strategies, this phase will also consider the migration
of a project to time-based releases. This work is based on
action research involving live projects, such as Debian [3],
which faces considerable problems with its releases and is
searching for solutions (Fig. 1). There will also be quasi-
experiments to test the effectiveness and the impact on the
quality of different release practices.

IV. CONCLUSIONS

This research focuses on release management as one
aspect of quality management and quality improvement in
volunteer free software and open source projects. Release
management is a problematic area in open source devel-
opment in which significant improvements are possible.
Research in this area that is carried out in close collaboration
with the free software community has the potential to make
a substantial contribution. In addition to identifying good
release management practices, this research will investigate
whether a group of volunteers can make predictable and
high quality releases. This addresses fundamental questions
regarding the open source development model and qualifies
whether consistent levels of quality and predictable sched-
ules are possible in distributed, volunteer projects.

V. ACKNOWLEDGEMENTS

This work is supported in part by Fotango, the NUUG
Foundation and the EPSRC.

REFERENCES

[1] J. R. Erenkrantz, “Release management within open source projects,”
in 3rd Workshop on Open Source Software Engineering. ICSE, 2003,
pp. 51–55.

[2] D. M. German, “Mining CVS repositories, the softChange experi-
ence,” in International Workshop on Mining Software Repositories.
ICSE, 2004, pp. 17–21.

[3] J. M. González-Barahona, G. Robles, M. Ortuño Pérez,L. Rodero-
Merino, J. Centeno González, V. Matellan-Olivera, E. Castro-
Barbero, and P. de-las Heras-Quirós, “Analyzing the anatomy of
GNU/Linux distributions: methodology and case studies (Red Hat
and Debian),” inFree/Open Source Software Development, S. Koch,
Ed. Hershey, PA, USA: Idea Group Publishing, 2004, pp. 27–58.

[4] T. J. Halloran and W. L. Scherlis, “High quality and open source
software practices,” inProceedings of the 2nd Workshop on Open
Source Software Engineering. Orlando, FL, USA: ICSE, 2002.

[5] N. Jørgensen, “Putting it all in the trunk: Incremental software en-
gineering in the FreeBSD open source project,”Information Systems
Journal, vol. 11, no. 4, pp. 321–336, 2001.

[6] M. Michlmayr, “Managing volunteer activity in free software
projects,” in Proceedings of the 2004 USENIX Annual Technical
Conference, FREENIX Track, Boston, USA, 2004, pp. 93–102.

[7] M. Michlmayr and B. M. Hill, “Quality and the reliance on individ-
uals in free software projects,” inProceedings of the 3rd Workshop
on Open Source Software Engineering. Portland, OR, USA: ICSE,
2003, pp. 105–109.

[8] G. Robles, J. M. González-Barahona, and R. A. Ghosh, “GlueTheos:
Automating the retrieval and analysis of data from publiclyavailable
software repositories,” inInternational Workshop on Mining Software
Repositories. ICSE, 2004, pp. 28–31.

[9] D. C. Schmidt and A. Porter, “Leveraging open-source communities
to improve the quality & performance of open-source software,”
in Proceedings of the 1st Workshop on Open Source Software
Engineering. Toronto, Canda: ICSE, 2001.

[10] A. Senyard and M. Michlmayr, “How to have a successful free
software project,” inProceedings of the 11th Asia-Pacific Software
Engineering Conference. Busan, Korea: IEEE Computer Society,
2004, pp. 84–91.

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), 309-310


