
International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Empirical Research, Open Source Software, Project Management, Software Engineering,
Time-Based Release Management

INTRODUCTION

“Release early and release often.”

Despite Raymond’s (1999) provocative char-
acterisation of release management in Free and
Open Source Software (FOSS), the topic has
been the subject of little research in the interim,
exceptions being studies by Erenkrantz (2003)
and Michlmayr et al. (2007). Furthermore,
even in the traditional software literature there
have been relatively few studies of release

management, most commonly in conference
proceedings (e.g. Dayani-Fard et al., 2005; Du
& Ruhe, 2005; Erdogmus, 1999; Li et al., 2003;
Ruhe & Greer, 2003; Sassenburg & Bergout,
2006) and a smaller number of journal papers
on the topic (e.g. Greer & Ruhe, 2004; Levin
& Yadid, 1990).

As the FOSS concept has matured, its com-
mercial significance and economic potential
has also increased, and issues such as quality
and sustainability have become increasingly
important (Fitzgerald, 2006). Indeed there is

Time-Based Release
Management in Free and Open

Source (FOSS) Projects
Martin Michlmayr, Centre for Technology Management, University of Cambridge,

Cambridge, UK

Brian Fitzgerald, Lero – Irish Software Engineering Research Centre, University of Limerick,
Limerick, Ireland

ABSTRACT
As the Free and Open Source (FOSS) concept has matured, its commercial significance has also increased,
and issues such as quality and sustainability have moved to the fore. In this study, the authors focus on time-
based release management in large volunteer FOSS projects, and reveal how they address quality and sustain-
ability issues. They discuss the differences between release management in the traditional software context
and contrast it with FOSS settings. Based on detailed case studies of a number of prominent FOSS projects,
they describe the move to time-based release management and identify the factors and criteria necessary for
a successful transition. The authors also consider the implications for software development more generally
in the current dynamic Internet-enabled environment.

DOI: 10.4018/jossp.2012010101

2 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

evidence that a significant inhibitor to FOSS
adoption arises from the perception of a lack of
guaranteed quality in FOSS products (Tawileh
et al., 2006). As a consequence, FOSS projects
need to mitigate risk from such specific issues
as lack of deadlines (Garzarelli & Galoppini,
2003), reliance on volunteers (Robbins, 2002;
Michlmayr & Hill, 2003) and ad-hoc coordina-
tion and management processes (Bergquist &
Ljungberg, 2004; Zhao & Erlbaum, 2003). A
number of FOSS projects appear to have ad-
dressed the above issues through formalising
their release management process. The latter
is an important part of a project’s approach to
quality assurance since developers stop add-
ing new features during the preparation for a
release and instead focus on the identification
and removal of defects. The feedback obtained
after a release also provides information as to
which parts of the software might need more
attention.

Despite the increased company involve-
ment in FOSS, a comprehensive study found
that more than two-thirds of FOSS developers
comprise individual volunteers (Ghosh, 2006).
Consequently, our study focuses on volunteer
FOSS projects as these will require more for-
malised processes to mitigate perceptions of risk
in adoption. Furthermore, many of the unique
and most significant benefits of FOSS arise
in large projects. For example, large projects
are more likely to result in communities form-
ing around them which have sufficient levels
of participants with diverse skills to ensure a
rapid development trajectory and prompt defect
removal (Mockus et al., 2002; Raymond, 1998).

Given the above, our overall research objec-
tive was to investigate release management in
large volunteer-oriented FOSS projects.

The paper is laid out as follows: First, we
discuss the topic of release management in tradi-
tional software contexts and then discuss its role
in the specific context of FOSS projects. Then
we present our two-phase research approach for
this study. Afterwards we analyses and discusses

the findings of the study. Finally, we discuss
our conclusions and identify implications for
research and practice.

SOFTWARE RELEASE
MANAGEMENT

Software maintenance is the sub-field concerned
with evolution and maintenance of software
after its initial development and release. Levin
and Yadid (1990) criticise traditional models of
software development which only focus on the
initial release and ignore subsequent releases.
A continuous release strategy is important for
several reasons: it delivers both fixes and new
functionality to users (Levin & Yadid, 1990).
Also, it staves off obsolescence by ensuring the
value of the software is maintained (Baetjer,
1997). As the development environment has
become more dynamic and fast-paced, the so-
called Internet-time (Baskerville et al., 2002),
incremental releases have become more com-
mon (Greer & Ruhe, 2004). However, in pro-
prietary release management, this is a complex
issue which requires delicate balancing as early
introduction of a new release may erode the
market-share and revenue generating potential
of the existing release.

In FOSS projects such commercially-
driven balancing has not been significant to the
same extent (Robbins, 2002), and there are other
significant differences also. Table 1 provides
a summary which contrasts the differences
between release management in traditional
proprietary development and FOSS projects.

Overall, however, release management has
been under-researched in relation to FOSS.
While Erenkrantz (2003) has identified char-
acteristics related to release authority and ac-
tual work during a release, we know little about
actually moving from the development phase
to preparation of a release. Fundamentally, it
is not obvious how a team of loosely-connect-
ed globally distributed volunteers can work

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

together to release software, some of which
consists of millions line of code written by
thousands of people (Gonzalez-Barahona et al.,
2001), in a timely fashion and with high qual-
ity. There is much evidence to suggest this is a
problematic issue. For example, Debian has
experienced increasingly delayed and unpre-
dictable releases with up to three years between
stable releases. However, this pales into insig-
nificance when compared with cases such as
tar and Mutt, an email client, which saw more
than five years between stable release, and even
the compression utility, gzip, which had 13
years between stable releases (1993–2006). Nor
were these products entirely bug-free when the
new versions were eventually released.

In recent time, the issue of release manage-
ment has become an important focus in many
FOSS projects, and a number of projects have
drastically changed their release strategy, thus
prompting our interest in this area.

Coordination Theory

From a theoretical viewpoint, release man-
agement highlights the critical importance of
coordination. While much FOSS development
involves parallel development on self-selected
tasks (Mockus et al., 2002), when a release oc-
curs, all development work needs to be aligned
and these parallel streams have to stabilise
simultaneously. Given the size and complexity

of some FOSS projects, significant coordination
efforts are needed. This coordination is difficult,
not only because of the size of a project but
also because the majority of participants are
volunteers who are geographically dispersed.

Malone and Crowston (1994) define coor-
dination as “managing dependencies between
activities… if there is no interdependence,
there is nothing to coordinate”. Coordination
theory provides an approach to studying pro-
cesses that are employed by an organisation to
perform specific activities and dependencies
that occur while these activities are carried out.
Processes are coordinated in different ways,
but organisations often face similar problems
that are managed similarly among different
organisations. When actors try to perform their
activities, there are dependencies that influence
and limit how particular tasks can be carried
out. In order to overcome these challenges spe-
cific additional activities have to be performed
(Crowston, 1997).

When analysing activities, coordination
theory therefore makes a distinction between
the activities of a process that are needed to
achieve the goal and those that are performed
to manage dependencies. Coordination theory
is mostly concerned with the latter, namely
the coordination mechanisms. Some of these
coordination mechanisms can be specific to a
situation but many are general as they pertain
to different situations across organisations.

Table 1. Traditional v. FOSS release management practices

Traditional/Closed Source FOSS

Often follows a waterfall model Typically follows iterative development practices

Delivery of a monolithic release after long time in
development

Small releases published in an incremental fashion

Uses dedicated planning tools, such as Gantt charts Few dedicated planning tools but good integration of infra-
structure (e.g. bug tracking) with release planning

Development releases are private Development is open, and releases and repositories acces-
sible

Few releases made for the purpose of user testing Development releases published according to motto “release
early, release often”

4 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Malone & Crowston (1993) have proposed
a framework which can be used to analyse
general coordination mechanisms based on the
dependencies they seek to address (see Table 2).

Shared Resources

A resource allocation process is needed when
multiple activities require access to the same
limited resource (such as time or storage space).
An organisation can use different mechanisms
to deal with this dependency. A simple strategy
would be a ‘first come, first served’ approach
but it is unlikely that this mechanism is appro-
priate in complex situations because it might
stall activities with high importance or urgency.
Another way to address this dependency would
be to perform bidding within the organisation
in a similar fashion to a conventional economic
market.

Producer/Consumer Relationships

These dependencies occur when an activity
produces something that is used by another
activity. This dependency has three different
forms:

1. 	 Prerequisite constraints: the producer
activity needs to be completed before the
consumer activity can begin. A notification
process needs to be put in place so the con-
sumer activity can immediately start when
the producer activity has been completed.
Furthermore, organisations can perform

active tracking to make sure prerequisite
constraints are fulfilled, for example by
identifying activities on the critical path;

2. 	 Transfer: when the producer activity cre-
ates something that must be used in the
consumer activity, some kind of transfer
has to happen. In some cases, the consumer
activity is performed immediately after the
producer activity is completed, so the out-
put can be used directly without requiring
storage. It is more common, however, that
finished items need to be stored for some
time before they are used by a consumer
activity. Hence, an inventory of completed
items is often maintained;

3. 	 Usability: what the producer creates must
be usable by the consumer. This can be
done through standardisation, but it is also
possible to simply ask the users what char-
acteristics they want. Another mechanism
is participatory design, in which “users of
a product actively participate in its design”
(Malone & Crowston, 1993).

Simultaneity Constraints

This dependency occurs when activities have
to happen at the same time (or cannot occur
simultaneously). One mechanism to ensure that
dependencies will not interfere is the creation
of a schedule. Synchronisation can be used to
make sure that events happen at the same time,
for example by arranging for several people to
attend a meeting at the same time.

Table 2. Activity dependencies and coordination processes (Malone & Crowston, 1993)

Dependencies Coordination Process

Shared resources First-come, first-served; priority order, budgets, mana-
gerial decision, market-like bidding

Producer-consumer relationships
• Prerequisite constraints
• Transfer
• Usability

Notification, sequencing, tracking
Inventory management Standardisation, ask users,
participatory design

Simultaneity constraints Scheduling, synchronisation

Tasks and subtasks Goal selection, task decomposition

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 5

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Tasks and Subtasks

This activity can occur when a goal is divided
into sub-goals (or activities) which are needed in
order to attain the overall goal. It is possible to
start with the overall goal and then decompose
the task into different sub-goals in a top-down
fashion. A bottom-up approach would be goal
selection where a number of individuals realise
that they could combine their activities to
achieve a higher goal.

This framework will be used to integrate
coordination issues related to release manage-
ment in FOSS later.

RESEARCH APPROACH

This study was not concerned with deduc-
tively testing some a priori defined hypoth-
eses. Rather, the emphasis was on inductively
exploring and deriving lessons on FOSS release
management from grounded examples of FOSS
release management in practice. As McLean
(1973) aptly put it: “the proper place to study
elephants is the jungle, not the zoo”. Research is
needed into the actual practice of FOSS release
management, justifiable even solely on the basis
that practice has often preceded theory in the
field. In the early stages of a discipline, theory
can best progress by examining good practice
(Glass, 1991). Also, given the wide gap between
the best and average practice in the field (cf.
Boehm, 1981; Brooks, 1987), it is important
to discover the essentially good practices of

FOSS release management, so that these can
be transferred to other projects.

Two-Phase Research Approach

The research was deliberately conducted in
two phases. In phase 1, a series of exploratory
interviews were carried out with core developers
and release managers from 20 diverse FOSS
projects. Projects were selected to ensure a wide
coverage of different types of FOSS projects
(Table 3). Interviews were transcribed, yielding
41,000 words.

Following analysis of this Phase 1 interview
data, time-based release management emerged
as a significant issue. Unlike traditional release
management, which is typically feature-driven,
time-based release management makes re-
leases available according to an agreed interval.
In phase 2 of the research, seven FOSS projects
were selected as case studies to investigate
time-based release management in more depth.
We wanted to choose “extreme cases” (Miles
& Huberman, 1994) which would reveal more
detail on the phenomenon of interest. The fol-
lowing selection criteria were used to choose
the seven case study projects:

•	 Complex. Phase 1 interviews suggested
that coordination is more challenging in
large and complex projects. Rather than
using lines of code or number of developers,
we chose to operationalise this criterion as
whether the project had a dedicated release
manager or release team;

Table 3. Phase 1 FOSS projects

Projects

• Alexandria
• Apache
• Arch
• Bazaar
• Debian

• GCC
• GNOME
• Libtool
• Lua
• Nano

• OpenOffice.org
• Postfix
• Squid
• Synaptic
• Template Toolkit

• Twisted
• Ubuntu
• Vserver
• X.org
• XFree86

6 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

•	 Voluntary. Some definitions of voluntary
FOSS projects are based on developers
participating in their free time and not
profiting economically. However, we
operationalised this criterion in terms of
control. If the release manager cannot con-
trol what someone works on, coordination
is clearly more challenging, and we use
this to characterise projects as voluntary;

•	 Distributed. Again, geographically
distributed projects face more complex
challenges in terms of coordination and
release management. Thus we chose
projects which had a globally distributed
developer base;

•	 Time-Based. Given our specific focus on
time-based release management, we chose
only projects which had already moved,
or were currently moving to a time-based
release strategy. This also gave us a range
of projects at different stages of imple-
mentation of a time-based release strategy;

•	 Licensed as FOSS. Our focus is on col-
laborative development enabled by FOSS
and hence we only included projects which
had a clear FOSS license, although our
projects included those whose origins were
in both commercial environment and true
community projects.

The selected case study projects are
summarised in Table 4 which also shows the
release interval. The projects represent a good
cross-section of domain and application type.

The unit of analysis here was the indi-
vidual FOSS project, and at least 3 key experts
were selected from each project for in-depth
interviews. In this phase, we also sought to
interview a vendor representative associated
with each project wherever possible. This is
important as software vendors rely on FOSS
releases to integrate with their systems, and
they can thus provide a complementary perspec-
tive on release management issues, since they
serve effectively as the connection between the
developers of the software and the actual users.
This research phase resulted in 67,500 words
of transcript.

Below we discuss the case study method
and the interview data collection approach in
more detail. We also discuss the selection criteria
for each phase of the research.

The Case Study Method

The case study is not viewed in a similar fashion
by all researchers (cf. Smith, 1990). However,
according to one of the more common interpreta-
tions, it describes a small number of contexts,
and usually involves the collection of a large
amount of qualitative information. Case studies

Table 4. Phase 2 case study projects

Project Release Interval Introduction of Time-Based

Debian 15-18 months After 3.1 release in June 2005

GCC 6 months 2001

GNOME 6 months Beginning of 2003

Linux kernel 2 week merge window, releases every 3-4
months

Middle of 2005

OpenOffice.org 3 months Beginning of 2005

Plone 6 months Beginning of 2006

X.org 6 months End of 2006

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 7

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

can be very valuable in generating an under-
standing of the reality of a particular situation,
and can provide a good basis for discussion.
There is no attempt at experimental design nor
precise control of variables.

In-Depth Personal Interviews

The purpose of the personal interview is to
encourage the interviewee to relate experiences
and attitudes relevant to the research problem
(Walker, 1988). It is a very flexible technique
in that the interviewer can probe deeper into
any interesting details that emerge during the
interview, and concentrate in detail on particular
aspects.

A number of problems have been identi-
fied in relation to the use of interviewing as a
research technique. A frequently-cited problem
is that of researcher bias, that is, the researcher
may have expectations as to what the research
is going to uncover and may ask questions that
elicit the answers he or she wants to hear. This
may be subconscious, but the way questions
are phrased may lead to particular answers
being given. The problem of researcher bias
is further compounded by another associated
problem, demand characteristics. This refers to
the phenomenon whereby subjects give answers
that they think the researcher wants. Critics
of the interviewing technique suggest that the
researcher “acts like a sieve which selectively
collects and analyses non representative data”
(Bogdan & Taylor, 1975). However, almost all
research methods are ‘guilty’ of bias to varying
degrees. In the interviews, open-ended questions
were used as often as possible to allow more
freedom for answers. (The interview guide is
available from the authors on request).

Reliability and Validity Issues

Research reliability is concerned with the
consistency with which research results can be
replicated. A frequent criticism of qualitative
research is that due to its subjective nature, rep-
lication is problematic. While acknowledging

that qualitative analysis would not expect all
researchers to interpret the findings in exactly
the same way, it is important that the research
process be transparent and accessible to others.
To help address research reliability, Yin (1994)
recommends the use of a case study database and
protocol. A case study database was established
which contained the raw field notes, transcribed
interviews, and coding of this data.

Content analysis was undertaken using
grounded theory coding techniques proposed by
Corbin & Strauss (1990). This necessitates the
researchers to be immersed in the data and to
draw on existing theoretical knowledge without
imposing a theory (Glaser & Strauss, 1967). It,
thus, encourages the researcher to be flexible
and creative while imposing systematic coding
procedures (Corbin & Strauss, 1990).

The initial stage of open coding involved
detailed examination of the field transcripts
to ascertain the main ideas. These were then
grouped into meaningful headings [informed
by constructs developed in the earlier sections]
to reveal categories and their properties. Axial
coding was then used to determine relationships
between categories and their subcategories e.g.
conditions, context, action/interaction strategies
and consequences. This process continued in
an iterative manner, and resulted in the elabo-
ration of several categories and relationships.
Analytical memos were written as patterns and
themes emerged from these field notes (see
the Appendix for an abbreviated example of
the above).

The case study protocol specifies the
criteria for selecting the case applications, the
choice of whom to interview, and the interview
protocol in terms of interview questions.

Research validity is concerned with wheth-
er the actual research in practice matches what
it purports to be about. In interpretive research
this is primarily concerned with the “truth value”
of the research (Miles & Huberman, 1994).

Construct validity deals with the extent to
which the constructs as operationalised relate
to the research phenomenon being studied. In

8 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

this study, given the lack of research on FOSS
release management, construct validity was
important. Yin (1994) describes three tactics to
deal with construct validity: the use of multiple
sources of evidence, the establishment of a chain
of evidence, and key informants reviewing
draft findings. In this case, the collection of
data on the same phenomenon from multiple
interviewees over two research phases, both
within and external to the projects, together
with information gleaned from project docu-
mentation and presentations, project websites,
and relevant mailing lists, helped address the
multiple sources of evidence criterion. In rela-
tion to the chain of evidence criterion, this was
addressed through the establishment of a case
study database, and the rigorous analysis and
coding of data. Finally, key informant review
and feedback was addressed in a number of
ways. A draft of the findings were sent to the
key informants interviewed from the projects.
Also, the findings were presented at several
workshops and conferences attended by several
of the project participants and FOSS researchers
and practitioners more generally.

External validity is concerned with the
extent to which a study’s findings can be gener-
alised. One of the limitations of this study might
appear to be the fact that it is based on a small
number of cases and thus there is limited scope
for generalisation. Following this conventional
statistical model, researchers have suggested
increasing sample size or number of case study
organisations, However, Lee and Baskerville
(2003) propose four distinct categories of
generalising, only one of which corresponds
to statistical sampling-based generalisation.
One of the other categories in their framework,
that of generalising from empirical description
to theoretical statements, is more applicable to
our research study. This view of generalising
from thick description to theoretical concepts,
specific implications and rich insight is also
recommended as a strategy by Walsham (1993)
who identifies four forms of generalisation, all
of which are met by this study:

•	 Development of concepts: The concept of
time-based release management is elabo-
rated and a number of associated concepts
have been described and operationalised
in relation to release management and
coordination in large software projects;

•	 Generation of theory: The rich data
gathered in this study about FOSS projects
have been used to generate a theory of
time-based release management;

•	 Drawing of specific implications: A
number of implications follow from the
theory that have practical value to the FOSS
community, such as insights into factors
influencing the choice of an appropriate
release interval for a project;

•	 Contribution of rich insight: Since this
research has gathered qualitative data
from key personnel involved in release
management, rich insights about the mo-
tives behind specific practices found in the
FOSS community have been obtained. A
good understanding of problems that can
often be observed in FOSS projects and
their causes has also been developed.

ANALYSIS OF FINDINGS

We discuss the research findings from each of
the research phases below.

Phase 1 - Exploratory Interviews

As already mentioned, phase 1 of this study
involved exploratory interviews with key devel-
opers and release managers of 20 FOSS projects
(Table 3). The most significant findings from
this phase relate to the identification of three
different categories of release, to the preparation
of stable releases, and to fundamental release
strategies.

FOSS Release Categories

The three release categories identified differ
quite significantly regarding the audience they

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 9

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

address and the effort required to deliver the
release:

•	 Development releases aimed at develop-
ers interested in working on the project or
experienced users who need cutting edge
technology;

•	 Major user releases based on a stabilised
development tree. These releases deliver
significant new features and functionality
as well as bug fixes to end-users and are
generally well tested;

•	 Minor releases as updates to existing user
releases, for example to address security
issues or critical defects.

Since developers are experts, develop-
ment releases do not have to be polished and
are therefore relatively easy to prepare. Minor
updates to stable releases also require little
work since they usually only consist of one or
two fixes for security or critical bugs. On the
other hand, a new major user release requires
significant effort: the software needs to be
thoroughly tested, various quality assurance
tasks have to be performed, documentation
has to be written and the software needs to be
packaged up.

Interestingly, development releases have
become less important as developers are in-
creasingly using version control systems to
download the most recent version rather than
relying on a development release that may be
a few weeks out of date.

Preparation of Stable Releases

Preparing a stable release for end-users involves
a complex set of tasks in which all developers
on a project have to coordinate their work to
deliver a high quality product. While the spe-
cific release approach may differ from project
to project, we could identify a common pattern
of staged progress towards a release where
each stage is associated with increasing levels
of control over the changes that are permitted.

These control mechanisms are usually known as
freezes since the development is slowly halted
and eventually brought to a standstill:

•	 Feature freeze: No new functionality may
be added. The focus is on the removal of
defects;

•	 String freeze: No messages which are
displayed by the program, such as error
messages, may be changed. This allows
translators to translate as many messages
as possible to other languages before the
release;

•	 Code freeze: Permission needs to be sought
before making any change, even in order
to fix bugs.

Among the twenty projects in phase 1,
there was no common pattern as to how often
new user releases are published. The release
frequency ranged from one month to several
years. A number of factors were identified which
are related to the release frequency:

•	 Build time: some projects require massive
processor power to compile a binary that
can be executed and shipped to users. This
long compilation step puts a natural limit
on release frequency;

•	 Project complexity: projects consisting
of many different components with large
numbers of developers exhibit a tendency
towards a slower release cycle due to the
extra coordination burden;

•	 Age of the project: young projects tended
to perform releases more frequently. This is
largely because young projects need more
direct feedback from users than already
established projects. Also, young projects
are likely to be smaller and thus it can be
easier to prepare releases;

•	 Nature of the project: projects which are
aimed at the desktop or other fast-paced
environments have a much higher release
frequency than software which is mainly

10 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

used on servers where there is a tendency
to avoid upgrades unless they are strictly
necessary. The audience also plays an
important role. Projects which are mainly
oriented towards developers or experienced
users may make frequent releases because
such users are often interested in the latest
technology.

There is another factor which has a major
impact on the whole release strategy of a FOSS
project: the inclusion of the project’s software
in a collection of FOSS software, such as a
Linux distribution. FOSS projects publish their
work independently but for a complete system
hundreds or even thousands of component ap-
plications are required. A number of non-profit
projects and companies exist whose purpose it
is to take individual FOSS applications and in-
tegrate them to a system which is easy to install
and use. There are commercial companies which
provide such integrated systems, such as Red
Hat or Novell with their SUSE Linux, as well
as non-profit organisations, such as Debian and
Gentoo. The inclusion in such systems is seen
as a very positive factor for a project because
its software is thereby exposed to a much wider
audience. At the same time, this greater volume
of end-users often requires changes to the release
strategy because the project is no longer solely
used by developers who are inherently more
familiar with the software.

Release Strategies

While there are many differences regarding
the specific details of the implementation of a
release management strategy, the following two
fundamental strategies have been identified:

•	 Feature-based strategy: the basic premise
is to perform a new release when a specific
set of criteria has been fulfilled and certain
goals attained, most typically a number
of features which developers perceive as
important. This strategy is in line with

traditional software release management
which is feature-driven;

•	 Time-based strategy: a specific date is set
for the release well in advance and a sched-
ule created so people can plan accordingly.
Prior to the release, there is a cut-off date on
which all features are evaluated regarding
stability and maturity. A decision is then
made as to whether they can be included
in the release or whether they should be
postponed to the following release.

A number of projects reported growing
frustration with the feature-based release strat-
egy which results in very ad-hoc processes. All
functionality that is desired is never achieved
and so the release manager has to call for a
release at some point, often very unexpectedly.
The previous release is typically quite dated and
so there is a great rush to get a new release out
of the door. This lack of planning can lead to
incomplete features and insufficient testing.
This strategy is also often associated with the
motto “release when it’s ready”. Even though
this is a laudable goal, in practice it is often
problematic, particularly in large projects where
there are always new features that could be added
or bugs that could be fixed. This approach results
in major delays because the project is constantly
at the point where it could make a release but
there is always something that remains to be
done. In the meantime, the last stable release
becomes increasingly out of date.

In order to address these problems about a
quarter of the projects investigated in Phase 1
were considering a migration to a time-based
strategy. In their view, time-based releases
constituted a more planned and systematic ap-
proach to release management, making release
coordination easier. This issue is the main sub-
ject of the phase 2 case study research.

Phase 2 - Case Studies

As already mentioned, phase 2 of the research
involved case studies of seven FOSS projects

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 11

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(Table 4). Here we present a cross-case analysis,
initially focusing on the lack of planning and
ad-hoc release management practices across
projects, and the consequent negative short
and long-term effects. We then focus on the
implementation of a time-based release man-
agement strategy.

Ad-Hoc Management Processes

In distributed volunteer projects, the lack of
release planning places extreme coordination
overhead on the individuals responsible for
release management. Extreme (and increas-
ingly long) delays in releases had been common
across several of the projects; indeed, Debian
had achieved the unenviable reputation of never
being on time. Due to lack of overall planning,
instructions to prepare for a release usually
came out of the blue. This resulted in a flurry
of development activity as developers tried to
make changes to be included in the next release.
Rather than slowing down development, freeze
announcements actually had the opposite effect,
in what was aptly described by a Linux kernel
developer as “a thundering herd of patches”,
and inevitably delaying the actual release:

“I think that freezes were sudden, and, like in
Debian, we were promised a freeze and then it
wouldn’t happen for six months. This means six
months of working incredibly hard for a deadline
which is constantly moving away from you.”
(Murray Cumming, GNOME)

This also had an impact on vendors who
needed to incorporate these releases as part of
their distributions:

When you made your changes on the develop-
ment branch you wouldn’t know when you would
be able to use those changes. But if you’re
making changes on the stable branch, you’re
changing very old code. (Havoc Pennington,
Red Hat)

As a result, vendors tended to backport
changes from the development version to the last
stable release which led to much fragmentation.
The situation was captured well in relation to
OpenOffice.org:

It was very difficult to predict when it [2.0] would
be ready, and as a consequence, we shipped a
product based on release snapshots made three
months before 2.0 while trying to bug fix those
in parallel. (Michael Meeks, Novell)

In summary the above led to immediate
problems in the short-term such as:

•	 Huge number of changes to test as develop-
ers added features indiscriminately;

•	 Little testing of development releases as
these moved increasingly further from the
latest stable release;

•	 Fragmentation of development as vendors
chose to work with their own versions and
avoid the official release;

•	 Out-of-date software due to long delays
between stable releases.

These ad-hoc processes also led to long-
term problems such as loss of credibility for the
project, and fewer contributors for the project
as developers become disillusioned with delays.

A Time-Based Release
Management Strategy

All projects were moving towards a time-based
release management strategy based on the
early successful experiences of projects such as
GNOME and GCC. However, four conditions
appear to be essential to pursue a time-based
release management strategy:

•	 Sufficient development done in release
interval: While this may seem a very obvi-
ous pre-condition, many FOSS projects on
forums such as SourceForge and Freshmeat
show very little development activity, e.g.
no change in version number or code size

12 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

over an extended time-period (Capiluppi
et al., 2003; Howison & Crowston, 2004).
Thus, time-based releases would not be
relevant to many FOSS projects as insuffi-
cient development would have taken place;

•	 Distribution costs cheap: If releases are
to be published and delivered at regular
intervals, distribution must be inexpensive
and easy. While distribution may be on
CDs, increasingly releases are distributed
via a web-site from which end-users and
vendors can access the relevant releases;

•	 Release rationale not driven by specific
functionality: Traditionally, software dis-
tributed as a shrink-wrapped product will
tend towards providing new functionality
to incentivise customers to upgrade. For
FOSS projects it is important that they are
not constrained to provide specific func-
tionality in a release as such constraints
may delay the project if development and
testing are not completed before the release
deadline. Rather, frequent releases tend to
be welcomed in the FOSS context;

•	 Modular code and project structure:
While this requirement relates to the code
base and organisational structure of the
project, in effect the two are highly cor-
related. Indeed, large FOSS projects have
been shown to be an aggregation of smaller
projects (Crowston & Howison, 2005). If
components in a release are modular, then
any defective modules can be swapped
out of the release, as components can be
developed, fixed and released more inde-
pendently. This insight is very important in
terms of time-based release management
because it allows the implementation of
two complementary release mechanisms:
individual components may be developed
independently and can make their own re-
leases as they wish, and the overall release
in which all components are combined and
tested can be performed with a time-based
strategy. Such strategies can be observed
in a number of projects, for example in
Debian and GNOME.

Time-based release management also helps
address coordination mechanisms as discussed
earlier. For example, instead of active task as-
signment, FOSS relies on self-assignment of
tasks. Development in FOSS projects is done
in a massively parallel way as individual de-
velopers work independently on features they
are interested in – the principle of optimistic
concurrency. This self-selection mechanism
works especially well in large projects as it al-
lows developers to work in areas in which their
expertise is best suited. Coordination then takes
place after the fact when the best solutions are
chosen (Yamauchi et al., 2000).

An important coordination mechanism that
also arises from time-based releases is that of a
regular schedule. The objective of time-based
releases is to announce a target date well in
advance and then publish a schedule with im-
portant milestones leading to the target date. A
regular schedule creates a number of significant
benefits, discussed in turn below:

Provides a Regular Reference Point

The parallel and independent nature of FOSS
development reduces the amount of active
coordination needed. However, regular syn-
chronisation is important so that developers
become aware of other changes that may conflict
with their own work or have other important
implications. GNOME developer Jeff Waugh
suggests a useful analogy with MPEG video
compression. Such compression algorithms
do not store each picture frame individually.
Instead, they store one frame and subsequent
changes made to that frame. At some point, they
include a full frame again and then record only
changes made to this frame. This mechanism
reduces the amount of storage space because
not every frame is stored as an entire frame. At
the same time, it provides a safety mechanism
to allow reconstruction because it periodically
stores a full frame from which to start again.
This frame, which contains the entire screen,
is known as the key-frame. Waugh argues that
regular releases act as a key-frame:

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 13

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

For us, the stable release is the key-frame — a
full complete picture of where we are. Develop-
ment is the modification to the key-frame. Then
you have another key-frame — the full picture.
There are only certain things changing, you’re
never unclear about what has changed, you
know what needs to be tested.

Promotes Developer Discipline
and Self-Restraint

One of the negative aspects of irregular feature-
based releases is that developers rush to get
their work included as they do not know when
the next release will take place. When a regular
schedule is in place, it is easier to persuade
developers to revert features from the release
if things are not working smoothly.

Improved Familiarity with the Process

If releases happen infrequently, developers and
release managers are less sure about the process.
There is much uncertainty and fire-fighting, and
problems inevitably occur. By implementing a
regular release cycle, developers become more
accustomed to it. Also, this familiarity helps
reduce the burden on the release manager as
developers learn to coordinate better through
growing familiarity with the process.

Self-Policing of Simultaneity
Constraints

Simultaneity constraints were identified as an
important coordination dependency earlier.
However, a published schedule allows this
to be self-policing, thus reducing the active
coordination required by the release manager.
The schedule becomes the overall planning tool
to define interdependencies between activities.
This establishes deadlines for different activi-
ties and arranges activities in a natural order.
This is crucial for many tasks and individuals –
translators, for example, who can only perform
their work when the documentation they need
to translate has been finished and is no longer
in a state of flux. The schedule not only tells
translators when they can start their work, but

by specifying a ‘string freeze’ it will also tell
developers when they must stop making changes
to texts (‘strings’).

A clear schedule also allows a vendor to
participate more closely in the development of
the project. With the help of a schedule, vendors
can decide whether new functionality they
would like to ship should be developed as part
of the official project or be part of their own
development line. The predictability offered
by time-based releases encourages vendors
to work on the official project and decreases
fragmentation, which has often occurred in
FOSS projects in the past.

Creation of a Release Schedule

Given the extent to which the release schedule
acts as a coordination mechanism, it needs to
be carefully planned. A necessary first step is to
choose the release interval. Broadly speaking,
it is important to strike a good balance between
leaving enough time to develop new features
on the one hand, and to perform testing and
release preparations on the other hand. One of
the main criteria a schedule has to fulfil is to
be realistic. While the majority of developers
are primarily interested in adding as many new
features as they can, the project as a whole, led
by the release manager or core developer, has
to be realistic as to how much new code can be
added so that it can still be sufficiently tested
within one release interval.

At a higher level also, there are significant
‘network effect’ advantages to be gained if a
project can synchronise its release schedule
with those of other projects from which it may
leverage benefits. For example, one of the key
reasons why the Plone project has decided to
move to a six-month time-based release strategy
was to align its development closer with that
of Zope. Plone is built on top of Zope and the
implementation of a similar release strategy will
allow the project to use the newest technologies
developed by Zope.

In keeping with this, a large number of
time-based FOSS projects have chosen a
release interval of six months. Since major

14 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Linux distributions, such as Fedora, follow the
same release interval this ensures that these
distributions will be able to ship the latest re-
leases produced by many FOSS projects. This
increases the exposure of the software and may
lead to better feedback. It may also provide a
further incentive for vendors to get involved
in important projects and help them meet their
release targets, as their own releases might
otherwise become jeopardised.

Finally, at a high level, given the voluntary
nature of FOSS contributions, releases should
be avoided during holiday periods, and given
the global nature of FOSS development this
extends to holidays relevant to all cultures and
traditions

Following the choice of release interval,
a necessary next step is the identification of
dependencies, the essence of which is captured
in the following:

We have dependencies. Applications depend
on APIs, translations depend on strings, docu-
mentation depends on the UI [user interface],
the UI depends on application writers and the
API. (Murray Cumming, GNOME)

Finally, the granularity of the schedule
needs to be planned. The release interval
must be divided into different phases such as
development and testing. Experience from
previous releases should be factored in as well
as dependency information.

SUMMARY AND CONCLUSION

Here we briefly summarise the findings be-
fore discussing the implications of theory and
practice.

Summary of Findings

Motivated by the continuing maturation of
FOSS towards more hybrid commercial forms,
this research focused on how quality issues such
as quality and sustainability could be improved
in FOSS. Coordination in software development

generally is a critical issue (Herbsleb & Mockus,
2003). This is further exacerbated in distributed
development contexts, and even more so when
the majority of developers are volunteers, as is
the case with FOSS projects. Given that stresses
come to a head during product releases, release
management is clearly a topic which should be
researched in some detail.

Overall, our research found that the feature-
based release strategy common to traditional
software development often causes problems
in relation to FOSS coordination and planning,
and results in delays, lack of testing, reduced
motivation of developers, fragmentation of
development as vendors created their own ver-
sions rather than relying on the official release,
and overall loss of credibility for the project.

Time-based release management, on the
other hand, reduces the amount of active coor-
dination required because it allows developers
to work with greater independence. Also, it
allows projects to concentrate their resources
on creating infrastructure and mechanisms to
support collaboration an coordination around
the critical time of a release. This serves to keep
participants informed about the status of the
project, and helps increase trust in the process
and motivates contributors to participate in the
release process.

Our main findings are summarised in
Table 5.

Implications

This study has a number of theoretical and
practical implications. We have provided
several examples where time-based release
management acts as a significant coordination
mechanism. Table 6 illustrates how we build
upon the coordination theory of Malone and
Crowston’s (1993) coordination concepts as we
have particularised their framework in relation
to FOSS release management.

With regards to practical implications,
much of the advice to FOSS practitioners is
summarised in Table 6. However, a number of
other issues could be explored to good effect.

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 15

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In the GNOME project, German (2004)
found that paid employees were responsible
for certain less-attractive tasks such as testing
and documentation, which did not attract the
attention of volunteers. Given the increased
commercial involvement in FOSS, it would be
interesting to assess the effect of professionalis-
ing and compensating the release management
role and related tasks, on the basis that these
are key tasks rather than being inherently
unattractive.

The length of the release cycle is obvi-
ously an issue which requires balancing and
will vary across FOSS projects and probably
also according to project maturity, as younger
projects will probably release more often to get
feedback etc. Too long a release interval may
reduce motivation levels and give the impression

of a moribund project. On the other hand, too
frequent a release schedule may limit radical
innovation and ambition as only functionality
that can be accomplished in a release interval
may be considered for implementation.

This work could be specifically extended
empirically and quantitatively to establish
whether time-based releases lead to higher
levels of motivation among developers, or what
impact it has on the level of code contributions.
Also, it would be interesting to test whether
the amount and quality of feedback is higher
in time-based release situations.

Moving to the software industry more gen-
erally, the trend towards software as a service
also suggests that a big-bang feature-based
release management strategy is not well-suited
as customers are more likely to appreciate

Table 5. Summary of findings on time-based release management in FOSS

FOSS Time-Based Release Management

Preconditions Benefits Creating a Schedule

• Sufficient development done
in release interval
• Distribution costs cheap
• Release rationale not driven
by specific functionality
• Modular code and project
structure

• Provides a regular reference point
• Promotes developer discipline and
self-restraint
• Increased familiarity with process
reducing release manager burden
• Self-policing of simultaneity
constraints

• Choose release interval
o Balance between what is realistic and
desirable to achieve
o Possible network effects from synchro-
nisation with other projects
o Identify periods to be avoided
• Identification of dependencies
• Plan granularity of schedule (develop-
ment, testing etc)

Table 6. Activity dependencies and coordination processes

Dependencies Coordination Process Relevance to FOSS Time-Based
Release Context

Shared resources First-come, first-served; priority
order, budgets, managerial decision,
market-like bidding

Optimistic concurrency – parallel
development
Coordination after the fact

Producer-consumer relationships
• Prerequisite constraints
• Transfer
• Usability

Notification, sequencing, tracking
Inventory management Standardisa-
tion, ask users, participatory design

Published schedule

Simultaneity constraints Scheduling, synchronisation String freezes
Release reference points

Tasks and subtasks Goal selection, task decomposition Self-selection of tasks
Identification of dependencies

16 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

continuous improvements. In this scenario,
customers will use the latest software from a
vendor web-site rather than buy a new shrink-
wrapped product. Thus, regular additions of
new functionality and a healthy metabolism
of a product under active development will be
more appropriate, and in turn this calls for a
time-based release management strategy.

Moving beyond the software domain, in
other contexts involving voluntary contribu-
tions, it would be useful to assess the extent to
which the lessons from this study are applicable
to other contexts.

Finally, to return to the metabolism meta-
phor, one of the interviewees referred to the
‘pulse of a project’ which is determined by its
release activity. It certainly seems that time-
based release management contributes greatly
to a healthy pulse.

ACKNOWLEDGMENTS

This work was supported, in part, by Science
Foundation Ireland grant 10/CE/I1855 to Lero -
the Irish Software Engineering Research Centre
(www.lero.ie). Martin Michlmayr is currently
at Hewlett-Packard.

REFERENCES

Baetjer, H. (1997). Software as capital. Los Alamitos,
CA: IEEE Computer Society Press.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh,
B., & Slaughter, S. (2002). Balancing quality and
agility in internet speed software development. In
Proceedings of the International Conference on
Information Systems (ICIS), Barcelona.

Bergquist, M., & Ljungberg, J. (2004). The power of
gifts: Organising social relationships in open source
communities. Information Systems Journal, 11(4),
305–320. doi:10.1046/j.1365-2575.2001.00111.x.

Boehm, B. B. (1981). Software engineering econom-
ics. Upper Saddle River, NJ: Prentice Hall.

Bogdan, R., & Taylor, S. (1975). Introduction to
qualitative research methods. New York, NY: Wiley
& Sons.

Brooks, F. (1987, April, 10-19). No silver bullet:
Essence and accidents of software engineering. In
H.-J. Kugler (Ed.), Proceedings of the IFIP Tenth
World Computing Conference.

Capiluppi, A., Lago, P., & Morisio, M. (2003).
Evidences in the evolution of OS projects through
changelog analyses. In Proceedings of the 3rd
Workshop on Open Source Software Engineering
(pp. 19-24). ICSE.

Corbin, J., & Strauss, A. (1990). Basics of qualita-
tive research: Grounded theory procedures and
techniques. Thousand Oaks, CA: Sage.

Crowston, K. (1997). A coordination theory approach
to organizational process design. Organization
Science, 8(2), 157–175. doi:10.1287/orsc.8.2.157.

Crowston, K., Howison, J. (2005). The social struc-
ture of Free and Open Source software development.
First Monday, 10(2).

Dayani-Fard, H., Glasgow, J., & Mylopoulos, J.
(2005). A datawarehouse for managing commer-
cial software release. In Proceedings of the 21st
International Conference on Software Maintenance,
Budapest, Hungary.

Du, G., & Ruhe, G. (2005). Identification of question
types and answer types for an explanation component
in software release planning. In Proceedings of the
Of K-CAP 2005, Banff, Canada (pp. 193-195).

Erdogmus, H. (1999) Comparative evaluation of
software development strategies based on net present
value. In Proceedings of 1st International Confer-
ence on Economics-Driven Software Engineering
Research, Toronto. Canada.

Erenkrantz, J. R. (2003). Release management within
open source projects. In Proceedings of the 3rd
Workshop on Open Source Software Engineering,
Portland, OR (pp. 51-55). ICSE.

Fitzgerald, B. (2006). The transformation of open
source software. Management Information Systems
Quarterly, 30(3), 587–598.

Garzarelli, G., & Galoppini, R. (2003, November).
Capability coordination in modular organization:
Voluntary FS/OSS production and the case of Debian
GNU/Linux.

German, D. (2004). The GNOME project: A case
study of open source, global software develop-
ment. Journal of Software Process: Improvement
and Practice, 8(4), 201–215. doi:10.1002/spip.189.

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Ghosh, R. A. (2006). Economic impact of open source
software on innovation and the competitiveness of the
information and communication technologies (ICT)
sector in the EU (Tech. rep.). Maastricht Economic
and Social Research and Training Centre on In-
novation and Technology. The Netherlands: United
Nations University.

Glaser, B., & Strauss, A. (1967). The discovery of
grounded theory: Strategies for qualitative research.
Chicago, IL: Aldine.

Glass, R. (1991). Software conflict: Essays on the
art and science of software engineering. Englewood
Cliffs, NJ: Prentice Hall.

González-Barahona, J. M., Ortuño Pérez, M. A., de las
Heras Quirós, P., Centeno González, J., & Matellán
Olivera, V. (2001, December). Counting potatoes:
The size of Debian 2.2. Upgrade, II(6), 60–66.

Greer, D., & Ruhe, G. (2004). Software release
planning: An evolutionary and iterative approach.
Information and Software Technology, 46, 243–253.
doi:10.1016/j.infsof.2003.07.002.

Herbsleb, J. D., & Mockus, A. (2003). Formulation
and preliminary test of an empirical theory of coor-
dination in software engineering. In Proceedings of
the 9th European Software Engineering Conference,
Helsinki, Finland (pp. 138-147).

Howison, J., & Crowston, K. (2004). The perils
and pitfalls of mining SourceForge. In Proceedings
of the International Workshop on Mining Software
Repositories (MSR 2004), Edinburgh, UK (pp. 7-11).

Krishnamurthy, S. (2002). Cave or community? An
empirical examination of 100 mature open source
projects. First Monday, 7(6).

Lee, A. S., & Baskerville, R. L. (2003). Generalizing
generalizability in information systems research.
Information Systems Research, 14(3), 221–243.
doi:10.1287/isre.14.3.221.16560.

Levin, K. D., & Yadid, O. (1990). Optimal release
time of improved versions of software packages.
Information and Software Technology, 32(1), 65–70.
doi:10.1016/0950-5849(90)90048-V.

Li, P. L., Shaw, M., & Herbsleb, J. (2003). Selecting
a defect prediction model for maintenance resource
planning and software insurance. In Proceedings of
5th Int’l Workshop on Economics-Driven Software
Engineering Research.

Malone, T. W., & Crowston, K. (1994). The inter-
disciplinary study of coordination. ACM Computing
Surveys, 26(1), 87–119. doi:10.1145/174666.174668.

Malone, T. W., Crowston, K., Lee, J., & Pentland, B.
(1993). Tools for inventing organizations: Toward a
handbook of organizational processes. In Proceed-
ings of the Second IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (pp. 72-82).

McLean, E. (1973). Empirical studies of manage-
ment information systems. In R. Van Horn (Ed.),
DataBase, winter (pp. 172–180).

Michlmayr, M., & Hill, B. M. (2003). Quality and
the reliance on individuals in free software proj-
ects. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, Portland, OR, (pp.
105-109). ICSE.

Michlmayr, M., Hunt, F., & Probert, D. (2007). Re-
lease management in free software projects: Practices
and problems. In J. Feller, B. Fitzgerald, W. Scacchi,
& A. Silitti (Eds.), Open source development, adop-
tion and innovation, (pp. 295-300). International
Federation for Information Processing: Springer.

Miles, M. B., & Huberman, A. M. (1994). Quali-
tative data analysis. Thousand Oaks, CA: Sage
Publications.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002).
Two case studies of open source software develop-
ment: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3),
309–346. doi:10.1145/567793.567795.

Raymond, E. S. (1999). The cathedral and the bazaar.
Sebastopol, CA: O’Reilly & Associates.

Robbins, J. (2002). Adopting OSS methods by adopt-
ing OSS tools. In Proceedings of the 2nd Workshop
on Open Source Software Engineering, Orlando, FL.

Ruhe, G., & Greer, D. (2003). Quantitative studies
in software release planning under risk and resource
constraints. In Proceedings of the IEEE-ACM
International Symposium on Empirical Software
Engineering (pp. 262-271).

Sassenburg, H., & Bergout, E. (2006). Optimal
release time- numbers or intuition? In Proceedings
of WoSQ, Shanghai, China.

Smith, N. (1990). The case study: a useful research
method for information management. Journal of
Information Technology, 5, 123–133. doi:10.1057/
jit.1990.30.

Tawileh, A., Rana, O., Ivins, W., & McIntosh, S.
(2006). Managing quality in the free and open
source software community. In Proceedings of the
12th Americas Conference on Information Systems,
Acapulco, Mexico.

18 International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Martin Michlmayr works as an Open Source Community Expert for HP’s Open Source Program
Office. In his role, he facilitates open source activities both internally within HP as well as
externally within the broader open source community. Michlmayr has been involved in various
free and open source software projects for over 15 years. Prior to his work at HP, he was a vol-
unteer coordinator for the GNUstep Project, acted as publicity director for Linux International
and served as the leader of the Debian project. In the two years as the leader of Debian, he
performed important organizational and coordination tasks. Michlmayr currently serves on the
board of the Open Source Initiative (OSI), the non-profit organization that maintains the Open
Source Definition. Michlmayr holds Master degrees in Philosophy, Psychology and Software
Engineering. He earned a PhD from the University of Cambridge.

Brian Fitzgerald holds an endowed professorship, the Frederick A Krehbiel II Chair in Inno-
vation in Global Business & Technology, at the University of Limerick, Ireland, where he has
also been Vice President Research from 2008-2011. He is Principal Investigator in Lero - the
Irish Software Engineering Research Centre, and was Founding Director of the Lero Graduate
School in Software Engineering. He was formerly at University College Cork, and has held
visiting positions in Italy, Austria, Sweden, US and the UK. He holds a PhD from the University
of London and his research interests lie primarily in software development, encompassing de-
velopment methods, global software development, agile methods and open source software. His
publications include 12 books, and over 130 peer-reviewed articles in the leading international
journals in both the Information Systems and Software Engineering fields.

Walker, R. (1988). Applied qualitative research.
Farnham, UK: Gower.

Walsham, G. (1993). Interpreting information sys-
tems in organizations. Chichester, UK: John Wiley
& Sons.

Yamauchi, Y., Yokozawa, M., Shinohara, T., &
Ishida, T. (2000). Collaboration with lean media:
How open-source software succeeds. In Proceedings
of the ACM Conference on Computer Supported
Cooperative Work, Philadelphia, PA (pp. 329-338).

Yin, R. K. (1994). Case study research: Design and
methods. Thousand Oaks, CA: Sage Publications.

Zhao, L., & Elbaum, S. (2003). Quality assurance
under the open source development model. Journal
of Systems and Software, 66, 65–75. doi:10.1016/
S0164-1212(02)00064-X.

International Journal of Open Source Software and Processes, 4(1), 1-19, January-March 2012 19

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX

Table 7. Quotes from research interviews

Quote from Research Interviews Analysis

My impression is that for almost two years people kept asking, “is the API
stable yet?’’ or, “have you finished with this interface, can we start translat-
ing it now?’’

Lack of communication leads to a
dependence on the release manager
and to a more centralised develop-
ment process.

You have the problem that you cannot suddenly say that now we have a
freeze. For people really to be prepared for it, they need to know, I think,
several months in advance what is going to happen.

Individual developers require infor-
mation about the release in order to
perform their work.

I think part of it was that [a 6 month cycle] gives you enough time to
develop some new features without too much time to get too far away from
the previous version.

The release cycle has to find a
compromise between conflicting
interests (e.g. doing more develop-
ment vs performing a release).

When you’re doing a time-based release, all you ever have to say is that if
you revert it you can put it into the next development phase.

Having a clear schedule allows bet-
ter control over developer input.

